1. Если через любую конечную точку любой из двух диагоналей квадрата проведём прямую MN перпендикулярно диагонали, то со сторонами квадрата и прямыми, на которых находятся стороны квадрата, проведённая прямая образует углы 45°. Это легко доказать с помощью данного чертежа.
2. Таким образом в этой ситуации имеем 4 равных прямоугольных треугольника (признак по равным катетам и острым углам), у которых равны и их гипотенузы.
3. Искомый отрезок MN состоит из гипотенуз двух треугольников, следовательно, длина MN=2⋅26,3=52,6 ед. изм.