task/30079176 ( 1 + 2sinx)sinx = sin2x+cosx .
решение (1+2sinx)sinx=sin2x+cosx ⇔ (1+2sinx)sinx=2sinxcosx +cosx ⇔(1+2sinx)sinx =(2sinx + 1 )cosx ⇔ (1+2sinx)sinx -(2sinx + 1 )cosx = 0 ⇔ (2sinx+1)(sinx - cosx) =0⇔ [2sinx +1 =0 ; sinx - cosx =0. ⇔
[ sinx = -1/2 ; sinx =cosx. ⇔ [ sinx = -1/2 ; tgx =1 . ⇔
[ x = (-1)ⁿ⁻¹(π/6) +πn , x =π/4 +πn , n∈ℤ .