Область определения (обозначается D(y)) функции находится следующим образом. Необходимо проанализировать функцию на наличие корней, знаменателей и логарифмов. Последний случай нас мало интересует, потому сразу перейдем к двум первым.
А именно: в знаменателе не должен быть ноль, а число под корнем не должно быть отрицательным.

На самом деле, первую строчку можно опустить, далее поймете почему).
Решая вторую строчку получаем:

Из этого следует, что x1≠-4, x2=-4, x3=1 (2 и 3 корни получились путем решения квадратного уравнения в числителе).
Далее методом интервалов находим промежутки, удовлетворяющие условию ≥0. Таким промежутком является [1;∞).
Ответ: D(y)=[1;∞)