Помогите составить 5 алгебраических задач,6 класс

0 голосов
13 просмотров

Помогите составить 5 алгебраических задач,6 класс


Математика (28 баллов) | 13 просмотров
Дан 1 ответ
0 голосов

Задача 1

В пещере старый пират разложил свои сокровища в 3 цветных сундука, стоящих вдоль стены: в один - драгоценные камни, а в другой - золотые монеты, а в третий - оружие. Он помнит, что:

- красный сундук правее, чем драгоценные камни;

- оружие правее, чем красный сундук.

В сундуке какого цвета лежит оружие, если зелёный сундук стоит левее, чем синий?

Решение:

ДКЗCО

зелёныйкрасныйсиний

Задача 2

Девять осликов за 3 дня съедают 27 мешков корма. Сколько корма надо пяти осликам на 5 дней?

Решение:

1 шаг 9 осликов в 1 день - 27 : 3= 9м.

2 шаг 1 ослик в 1 день - 9 : 9 = 1 м.

3 шаг 5 осликов в 1 день - 5 * 1 = 5 м.

4 шаг 5 осликов за 5 дней - 5 * 5 = 25 м.

Задача 3

Кенгуру мама прыгает за 1 секунду на 3 метра, а её маленький сынишка прыгает на 1 метр за 0,5 секунды.

Они одновременно стартовали от бассейна к эвкалипту по прямой.

Сколько секунд мама будет ждать сына под деревом, если расстояние от бассейна до дерева 240 метров

Решение:

1 шаг 240 : 3 = 80 (с) скакала мама Кенгуру

2 шаг сын за 0,5 с - 1 м, за 1 с - 2 м

3 шаг 80 * 2 = 160 (м) проскачет кенгурёнок за 80 с

4 шаг 240 - 160 = 80 (м) осталось проскакать кенгурёнку когда

мама уже под эвкалиптом

5 шаг 80 : 2 = 40 (с)

Ответ: 40 секунд

Задача 4

На скотном дворе гуляли гуси и поросята.

Мальчик сосчитал количество голов, их оказалось 30, а затем он сосчитал количество ног, их оказалось 84.

Сколько гусей и сколько поросят было на школьном дворе?

Решение:

1 шаг Представьте, что все поросята подняли по две ноги вверх

2 шаг на земле осталось стоять 30 * 2 = 60 ног

3 шаг подняли вверх 84 - 60 = 24 ноги

4 шаг подняли 24 : 2 = 12 поросят

5 шаг 30 - 12 = 18 гусей

Ответ: 12 поросят и 18 гусей.

Аналогичная задача: Сколько на лугу коров и гусей, если у них вместе 36 голов и 100 ног. (14 коров, 22 гуся)

Задача 5

На книжной полке можно разместить либо 25 одинаковых толстых книг, либо 45 тонких книг.

Можно ли разместить на этой полке 20 толстых книг и 9 тонких книг?

Решение:

1 шаг. Заметим, что и 25 и 45 делятся на 5

25 : 5 = 5(к) толстых

45 : 5 = 9 (к) тонких

2 шаг обратить внимание на то, что 5 толстых книг занимает столько же места сколько 9 тонких

3 шаг вывод на 20 толстых книг и 9 тонких - места хватит

Задача 6

Можно ли семь телефонов соединить между собой попарно так, чтобы каждый был соединён ровно с тремя другими?

(7 * 3 = 21, число нечётное, нельзя)

Задача 7

Имеются двое песочных часов: на 3 минуты и на 7 минут.

Яйцо варится 11 минут. Как отмерить это время при помощи имеющихся часов?

Решение:

Перевернуть обои часы. Когда пройдёт 3 минуты в семиминутных часах останется 4 минуты. Поставьте яйца в это время вариться. Когда 4 минуты закончатся, перевернуть семиминутные часы обратно 4 + 7 + 11 мин.

Задача 8

В ящике лежат шары: 5 красных, 7 синих и 1 зелёный.

Сколько шаров надо вынуть, чтобы достать два шара одного цвета?

Решение:

подумайте сколько всего шаров различных цветов можно достать не повторяясь (3)

Ответ: надо вынуть 4 шара

Задача 9

Известно, что P - 2 = Q + 2 = X - 3 = Y + 4 = Z - 5

Решение:

Обращаем внимание учащихся на, то что в каждом случае происходило с числами т.е. Р уменьшили на 2,

чтобы сравнять с остальными числами и т.д.

В ходе дальнейших рассуждений видим, что Y увеличили на 4, т.е. оно было самым маленьким.

Задача 10

Двум парам молодоженов нужно переправиться на другой берег. Для этого имеется двуместная лодка, но сложность состоит в том, что молодые жены отказались оставаться в обществе незнакомого мужчины без своего мужа.

Как осуществить переправу всех четверых, соблюдая это условие?

Решение:

М1 М2

М1

Ж1 Ж2

Ж1

М1 Ж1

Ответ: за 5 переездов.


(40 баллов)