Решение.
1) ![\sqrt[12]{3x+2} = \sqrt[24]{(5x-14)^{2} } \sqrt[12]{3x+2} = \sqrt[24]{(5x-14)^{2} }](https://tex.z-dn.net/?f=%5Csqrt%5B12%5D%7B3x%2B2%7D%20%3D%20%5Csqrt%5B24%5D%7B%285x-14%29%5E%7B2%7D%20%7D)
ОДЗ.
(5х - 14)² ≥ 0 при любых х
3х + 2 ≥ 0; 3х ≥ - 2; х ≥ -2/3
х∈[-2/3; +∞)
Возводим левую и правую части уравнения в 24-ю степень.
(3х + 2)² = (5х - 14)²
9х² + 12х + 4 = 25х² - 140х + 196
16х² - 152х + 192 = 0
2х² - 19х + 24 = 0
D = 19² - 4 · 2 · 24 = 169
√D = 13
x₁ = (19 - 13)/4 = 1.5
x₂ = (19 + 13)/4 = 8
Проверка x₁ = 1.5
![\sqrt[12]{3\cdot 1.5 +2} = \sqrt[24]{(5\cdot 1.5-14)^{2} } \sqrt[12]{3\cdot 1.5 +2} = \sqrt[24]{(5\cdot 1.5-14)^{2} }](https://tex.z-dn.net/?f=%5Csqrt%5B12%5D%7B3%5Ccdot%201.5%20%2B2%7D%20%3D%20%5Csqrt%5B24%5D%7B%285%5Ccdot%201.5-14%29%5E%7B2%7D%20%7D)
![\sqrt[12]{6.5} = \sqrt[24]{(-6.5)^{2} } \sqrt[12]{6.5} = \sqrt[24]{(-6.5)^{2} }](https://tex.z-dn.net/?f=%5Csqrt%5B12%5D%7B6.5%7D%20%3D%20%5Csqrt%5B24%5D%7B%28-6.5%29%5E%7B2%7D%20%7D)
![\sqrt[12]{6.5} = \sqrt[24]{42.25 } \sqrt[12]{6.5} = \sqrt[24]{42.25 }](https://tex.z-dn.net/?f=%5Csqrt%5B12%5D%7B6.5%7D%20%3D%20%5Csqrt%5B24%5D%7B42.25%20%7D)
![\sqrt[12]{6.5} = \sqrt[12]{6.5 } \sqrt[12]{6.5} = \sqrt[12]{6.5 }](https://tex.z-dn.net/?f=%5Csqrt%5B12%5D%7B6.5%7D%20%3D%20%5Csqrt%5B12%5D%7B6.5%20%7D)
Проверка x₂ = 8
![\sqrt[12]{3\cdot 18 +2} = \sqrt[24]{(5\cdot 8-14)^{2} } \sqrt[12]{3\cdot 18 +2} = \sqrt[24]{(5\cdot 8-14)^{2} }](https://tex.z-dn.net/?f=%5Csqrt%5B12%5D%7B3%5Ccdot%2018%20%2B2%7D%20%3D%20%5Csqrt%5B24%5D%7B%285%5Ccdot%208-14%29%5E%7B2%7D%20%7D)
![\sqrt[12]{26} = \sqrt[24]{26^{2} } \sqrt[12]{26} = \sqrt[24]{26^{2} }](https://tex.z-dn.net/?f=%5Csqrt%5B12%5D%7B26%7D%20%3D%20%5Csqrt%5B24%5D%7B26%5E%7B2%7D%20%7D)
![\sqrt[12]{26} = \sqrt[12]{26 } \sqrt[12]{26} = \sqrt[12]{26 }](https://tex.z-dn.net/?f=%5Csqrt%5B12%5D%7B26%7D%20%3D%20%5Csqrt%5B12%5D%7B26%20%7D)
Ответ: x₁ = 1.5; x₂ = 8
2) ![\sqrt[7]{3x^{2}-11x-4} = \sqrt[14]{100} \sqrt[7]{3x^{2}-11x-4} = \sqrt[14]{100}](https://tex.z-dn.net/?f=%5Csqrt%5B7%5D%7B3x%5E%7B2%7D-11x-4%7D%20%3D%20%5Csqrt%5B14%5D%7B100%7D)
ОДЗ:
Поскольку
> 0, то и 3х² - 11х - 4 > 0
3х² - 11х - 4 = 0
D = 11² + 4 · 3 · 4 = 169
√D = 13
x₁ = (11 - 13)/6 = -1/3
x₂ = (11 + 13)/6 = 4
Неравенство 3х² - 11х - 4 > 0 имеет решение х∈(-∞; - 1/3)∪(4; +∞)
То есть ОДЗ: х∈(-∞; - 1/3)∪(4; +∞)
![\sqrt[7]{3x^{2}-11x-4} = \sqrt[14]{10^{2}} \sqrt[7]{3x^{2}-11x-4} = \sqrt[14]{10^{2}}](https://tex.z-dn.net/?f=%5Csqrt%5B7%5D%7B3x%5E%7B2%7D-11x-4%7D%20%3D%20%5Csqrt%5B14%5D%7B10%5E%7B2%7D%7D)
![\sqrt[7]{3x^{2}-11x-4} = \sqrt[7]{10} \sqrt[7]{3x^{2}-11x-4} = \sqrt[7]{10}](https://tex.z-dn.net/?f=%5Csqrt%5B7%5D%7B3x%5E%7B2%7D-11x-4%7D%20%3D%20%5Csqrt%5B7%5D%7B10%7D)
Возводим левую и правую части уравнения в 7-ю степень
3х² - 11х - 4 = 10
3х² - 11х - 14 = 0
D = 11² + 4 · 3 · 14 = 289
√D = 17
x₁ = (11 - 17)/6 = -1
x₂ = (11 + 17)/6 = 14/3 = ![4\dfrac{2}{3} 4\dfrac{2}{3}](https://tex.z-dn.net/?f=4%5Cdfrac%7B2%7D%7B3%7D)
Проверка x₁ = -1
![\sqrt[7]{3+11-4} = \sqrt[7]{10} \sqrt[7]{3+11-4} = \sqrt[7]{10}](https://tex.z-dn.net/?f=%5Csqrt%5B7%5D%7B3%2B11-4%7D%20%3D%20%5Csqrt%5B7%5D%7B10%7D)
![\sqrt[7]{10} = \sqrt[7]{10} \sqrt[7]{10} = \sqrt[7]{10}](https://tex.z-dn.net/?f=%5Csqrt%5B7%5D%7B10%7D%20%3D%20%5Csqrt%5B7%5D%7B10%7D)
Проверка x₂ = 14/3 = ![4\dfrac{2}{3} 4\dfrac{2}{3}](https://tex.z-dn.net/?f=4%5Cdfrac%7B2%7D%7B3%7D)
![\sqrt[7]{3\cdot (\dfrac{14}{3})^{2}-11\cdot \frac{14}{3} -4} = \sqrt[7]{10} \sqrt[7]{3\cdot (\dfrac{14}{3})^{2}-11\cdot \frac{14}{3} -4} = \sqrt[7]{10}](https://tex.z-dn.net/?f=%5Csqrt%5B7%5D%7B3%5Ccdot%20%28%5Cdfrac%7B14%7D%7B3%7D%29%5E%7B2%7D-11%5Ccdot%20%5Cfrac%7B14%7D%7B3%7D%20-4%7D%20%3D%20%5Csqrt%5B7%5D%7B10%7D)
![\sqrt[7]{\dfrac{14^{2}-11\cdot 14-12 }{3} } = \sqrt[7]{10} \sqrt[7]{\dfrac{14^{2}-11\cdot 14-12 }{3} } = \sqrt[7]{10}](https://tex.z-dn.net/?f=%5Csqrt%5B7%5D%7B%5Cdfrac%7B14%5E%7B2%7D-11%5Ccdot%2014-12%20%7D%7B3%7D%20%7D%20%20%3D%20%5Csqrt%5B7%5D%7B10%7D)
![\sqrt[7]{10} = \sqrt[7]{10} \sqrt[7]{10} = \sqrt[7]{10}](https://tex.z-dn.net/?f=%5Csqrt%5B7%5D%7B10%7D%20%3D%20%5Csqrt%5B7%5D%7B10%7D)
Ответ: x₁ = -1; x₂ = ![4\dfrac{2}{3} 4\dfrac{2}{3}](https://tex.z-dn.net/?f=4%5Cdfrac%7B2%7D%7B3%7D)
3) ![\sqrt[3]{x^{3}-5x^{2}+9x-1} = x-1 \sqrt[3]{x^{3}-5x^{2}+9x-1} = x-1](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E%7B3%7D-5x%5E%7B2%7D%2B9x-1%7D%20%3D%20x-1)
ОДЗ: х∈(-∞; +∞)
Возводим правую и левую части уравнения в 3-ю степень
х³ - 5х² + 9х - 1 = (х - 1)³
х³ - 5х² + 9х - 1 = х³ - 3х² + 3х - 1
-5х² + 9х = -3х² + 3х
2х² - 6х = 0
2х (х - 3) = 0
х₁ = 0
х₂ = 3
Проверка х₁ = 0
![\sqrt[3]{0-0-0-1} = 0-1 \sqrt[3]{0-0-0-1} = 0-1](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B0-0-0-1%7D%20%3D%200-1)
-1 = -1
Проверка х₂ = 3
![\sqrt[3]{3^{3}-5\cdot 3^{2}+9\cdot 3-1} = 3 -1 \sqrt[3]{3^{3}-5\cdot 3^{2}+9\cdot 3-1} = 3 -1](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B3%5E%7B3%7D-5%5Ccdot%203%5E%7B2%7D%2B9%5Ccdot%203-1%7D%20%3D%203%20-1)
![\sqrt[3]{(27-45+27-1} = 3 -1 \sqrt[3]{(27-45+27-1} = 3 -1](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%2827-45%2B27-1%7D%20%3D%203%20-1)
![\sqrt[3]{8} = 2 \sqrt[3]{8} = 2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B8%7D%20%3D%202)
2 = 2
Ответ: x₁ = 0; x₂ = 3