Сумма членов бесконечно убывающей геометрической прогрессии равна 1,5, а сумма квадратов...

0 голосов
127 просмотров

Сумма членов бесконечно убывающей геометрической прогрессии равна 1,5, а сумма квадратов ее членов равна 1,125. Найдите первый член и знаменатель прогрессии


Алгебра (14 баллов) | 127 просмотров
Дан 1 ответ
0 голосов

Решите задачу:

|q| < 1 \\ b + bq + bq^2 + \cdots = \frac{b}{1 - q} = 1.5 \\ b^2 + b^2q^2 + b^2q^4 + \cdots = \frac{b^2}{1 - q^2} = 1.125 \\ \left \{ {{\frac{b}{1 - q} = 1.5} \atop {\frac{b^2}{1 - q^2} = 1.125}} \right. \\ \frac{b^2}{1 - q^2} = \frac{b}{1 + q} * \frac{b}{1 - q} = \frac{b}{1 + q} * 1.5 = 1.125 \rightarrow \frac{b}{1 + q} = 0.75 \\ b = 0.75(1 + q)

\frac{1 + q}{1 - q} = 1.5 \rightarrow q = 1.5(1 - q) - 1 \rightarrow q = \frac{0.5}{2.5} = 0.2 \\ b = 0.75(1 + q) = 0.9

(4.7k баллов)