
0\; ;\\\\Otvet:\; \; z_{M}=-11\sqrt2\; ." alt="\gamma _1=45^\circ \; \; ili\; \; \gamma _2=135^\circ \\\\\\M(x,\; y,\; z)\; ,\; \; cos\alpha =\frac{x_{M}}{|\overline {OM}|}\; ,\; \; cos\beta =\frac{y_{M}}{|\overline {OM}|}\; ,\; \; cos\gamma=\frac{z_{M}}{|\overline {OM}|}\\\\\\cos\gamma _1=\frac{z}{22}\; ,\; \; -\frac{\sqrt2}{2}=\frac{z}{22}\; \; \Rightarrow \; \; z=-\frac{22\sqrt2}2=-11\sqrt2<0\; ;\\\\cos\gamma _2=\frac{z}{22}\; ,\; \; +\frac{\sqrt2}{2}=\frac{z}{22}\; \; \Rightarrow \; \; z=+\frac{22\sqrt2}{2}=11\sqrt2>0\; ;\\\\Otvet:\; \; z_{M}=-11\sqrt2\; ." align="absmiddle" class="latex-formula">