Сумму квадратов находим как:
0} \atop {x^2+ 5x + 3 = 0,x<0}} \right. \\\ \left \{ {{x_1= \frac{5+ \sqrt{13} }{2} ,x_2=\frac{5- \sqrt{13} }{2},x>0} \atop {x_3=\frac{-5+ \sqrt{13} }{2},x_4=\frac{-5- \sqrt{13} }{2},x<0}} \right. \\\
\\\
x_1^2+x_2^2=(-5)^2-2\cdot3=19
\\\
x_3^2+x_4^2=5^2-2\cdot3=19
\\\
x_1^2+x_2^2+x_3^2+x_4^2=19+19=38" alt="x^2- 5|x| + 3 = 0 \\\ \left \{ {{x^2- 5x + 3 = 0,x>0} \atop {x^2+ 5x + 3 = 0,x<0}} \right. \\\ \left \{ {{x_1= \frac{5+ \sqrt{13} }{2} ,x_2=\frac{5- \sqrt{13} }{2},x>0} \atop {x_3=\frac{-5+ \sqrt{13} }{2},x_4=\frac{-5- \sqrt{13} }{2},x<0}} \right. \\\
\\\
x_1^2+x_2^2=(-5)^2-2\cdot3=19
\\\
x_3^2+x_4^2=5^2-2\cdot3=19
\\\
x_1^2+x_2^2+x_3^2+x_4^2=19+19=38" align="absmiddle" class="latex-formula">
Ответ: 38