Найти наименьшее натуральное число, делящееся ** 36, в записи которого встречаются все 10...

0 голосов
446 просмотров

Найти наименьшее натуральное число, делящееся на 36, в записи которого встречаются все 10 цифр.


Математика (12 баллов) | 446 просмотров
Дан 1 ответ
0 голосов

Число, делящееся на 36, должно делиться без остатка на 9 и на 4.

Сумма всех 10 цифр равна 45, то есть число, состоящее из этих цифр, делится на 9.

Признак делимости на 4 - число, которое составляют 2 последние цифры должно делиться на 4. Тогда наименьшим таким числом будет:

            1 023 457 968 : 36 = 28429388

Так как в числе должны быть представлены все 10 цифр, то 0 на первом месте стоять не может, и на последнем месте должна стоять цифра 8, однако, 98 и 78 не делятся на 4. Поэтому две последние цифры числа - 68. Остальные цифры распределяются по принципу: чем меньше разряд, тем большая цифра может его занимать.

------------------------------

Ответ: 1 023 457 968

(271k баллов)