Касательная к окружности перпендикулярна радиусу, проведенному в точку касания. Следовательно, угол СВО является прямым и равен 90град. Исходя из того, что сумма углов в треугольнике всегда равна 180град, можно вычислить угол СОВ. 180-20-90= 70град. Угол АОВ является смежным углом к углу СОВ, следовательно, их сумма также будет равна 180град. Следовательно, угол АОВ=110град.
Для вычисления остальных углов следует доказать, что треугольник АОВ равнобедренный, что исходит из того, что стороны АО и ОВ являются радиусами и, следовательно, между собой равны. Следовательно, треуг. АОВ равнобедренный. Следовательно, углы ОАВ и ОВА равны, как углы, лежащие в основании равнобедренного треугольника. Следовательно, их можно вычислить, как (180 - угол АОВ):2 =70:2=35град