Через точку D, лежащую ** радиусе ОА окружности с центром О, проведена хорда ВС,...

0 голосов
129 просмотров

Через точку D, лежащую на радиусе ОА окружности с центром О, проведена хорда ВС, перпендикулярна к ОА, а через точку В проведена касательная к окружности, пересекающая прямую ОА в точке Е. Докажите, что луч ВА-биссектриса угла СВЕ.


Геометрия (15 баллов) | 129 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
Через точку D, лежащую на радиусе ОА окружности с центром О, проведена хорда ВС, перпендикулярная к ОА, а через точку В проведена касательная к опружности, пересекающая прямую ОА в точкп Е. Докажите, что луч ВА - биссектриса угла СВЕ.     
 
Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.
Угол АВЕ образован касательной ВЕ и хордой ВА ⇒

угол АВЕ равен половине величины дуги АВ.
Соединив О с В и С, получим равнобедренный треугольник ВОС ( образован радиусами)
Радиус ОА перпендикулярен ВС по условию и является высотой  треугольника ВОС,  а т.к. треугольник равнобедренный, то и биссектрисой угла ВОС;  след, 
∠АОС=∠АОВ, следовательно, и дуги ВА и АС, на которые опираются центральные углы АОВ и АОС, равны
 
Угол АВС - вписанный Вписанный угол, опирающийся на ту же дугу, что центральный, равен половине его величины (половине величины дуги. на которую он опирается)
Угол АВС опирается на ту же дугу, что центральный ∠АОС и равен половине величины этой дуги.
Но угол АОВ опирается на дугу той же величины ( центральные углы ВОА и АОС равны, и дуги, на которые они опираются, тоже равны),
т.е.∪АВ = ∪ АС
Т.к. углы АВЕ  и АВС равны половине  равных дуг, ⇒ эти углы равны.  Следовательно, луч ВА, делящий угол СВЕ на два равных, - биссектриса  этого угла, ч.т.д.
(228k баллов)
0

Комментарий удален