Подскажите пожалуйста вывод формул закона ома в интегральнной и дифференциальной форме)

0 голосов
56 просмотров

Подскажите пожалуйста вывод формул закона ома в интегральнной и дифференциальной форме)


Физика (25 баллов) | 56 просмотров
Дано ответов: 2
0 голосов
Закон Ома в дифференциальной форме — физический закон, определяющий связь между Электродвижущей силой источника или напряжением с силой тока и сопротивлением проводника.  
Вывод формулы Закона Ома в дифференциальной формеПредположим, что напряженность поля не изменяется. Тогда под действием поля электрон получит постоянное ускорение равное  К концу пробега скорость упорядоченного движения достигнет значения  Тут t — среднее время между двумя последовательными соударениями электрона с ионами решетки. Друде не учитывал распределение электронов по скоростям и приписывал всем электронам одинаковое значение средней скорости. В этом приближении     Скорость изменяется за время пробега линейно. Поэтому ее среднее (за пробег) значение равно половине максимального  Полученную формулу подставим в  И у нас получилось В Формуле мы использовали : — Вектор плотности тока — Удельная проводимость — Вектор напряжённости электрического поля — среднее значение длины свободного пробега
 — скорость теплового движения электронов  
(14 баллов)
0

мне бы в формулах пожалуйста)

0 голосов
Для любой точки внутри проводника напряженность  результирующего поля равна сумме напряженности поля кулоновских сил и поля сторонних сил  . Подставляя в (17.6), получимУмножим скалярно обе части на вектор  , численно равный элементу  длины проводника и направленный по касательной к проводнику в ту же сторону, что и вектор плотности тока Так как скалярное произведение совпадающих по направлению векторов  и  , равно произведению их модулей, то это равенство можно переписать в виде
С учетом 
Интегрируя по длине проводника  от сечения 1 до некоторого сечения 2 и учитывая, что сила тока во всех сечениях проводника одинакова, получаем(17.7)Интеграл  численно равен работе, совершаемой кулоновскими силами при перенесении единичного положительного заряда с точки 1 в точку 2. В электростатике было показано, что
Таким образом,

где  и  - значение потенциала в т.1 и т.2.
Интеграл, содержащий вектор  напряженности поля, сторонних сил, представляет собой эдс  , действующей на участке 1-2(17.9)Интеграл(17.10)равен сопротивлению участка цепи 1-2.Подставляя (17.10), (17.9) и (17.8) в (17.7), окончательно получим(17.11)Последнее уравнение выражает собой закон Ома в интегральной форме для участка цепи, содержащего эдс и формулируется следующим образом: падение напряжения на участке цепи равно сумме падений электрического потенциала на этом участке и эдс всех источников электрической энергии, включённых на участке.При замкнутой внешней цепи сумма падений электрических потенциалов и эдс источника равна сумме падений напряжения на внутреннем сопротивлении источника и во всей внешней цепи где  или  Отсюда(17.12)

(50 баллов)