решить неравенства:
1) log3 x * (5 - 2 log3 x) = 3
2) (log2 x)^2 + 3 log1/2 x + 2 = 0
3) (1/2log3 x - 6) * log9 x = 4 (2 - log9 x)
4)log2 x * log3 x = 4 log3 2
5)lg x + 4
______ = 2 lg 100
lg x
1) log₃x * (5 - 2log₃x) = 3 5log₃x - 2log₃²x = 3 2log₃²x - 5log₃x + 3 = 0 log₃x = t 2t² - 5t + 3 =0 t₁ = 1 t₂ = log₃x = 1 x = 3 log₃x = x = Ответ: 3 ; 2) log₂²x + 3log₁/₂x + 2 =0 log₂²x + 3* + 2 = 0 log₂²x - 3log₂x + 2 =0 log₂x = t t² - 3t + 2 =0 t₁ = 1 t₂ = 2 log₂x = 1 x = 2 log₂x = 2 x = 4 Ответ: 2; 4 3) (1/2log₃x - 6 )*log₉x = 4(2-log₉x) (1/2log₃x - 6) * log₃x = t t² - 12t = 32 - 8t t² - 4t - 32 = 0 D₁ = 4+32=36 t₁ = 8 t₂ = -4 log₃x = 8 x = log₃x = -4 x = 4) log₂x * log₃x = 4log₃2 log₃x = 2log₃2 log₃x = -2log₃2 log₃x = log₃4 log₃x = log₃ x=4 x = 5) lg²x + 4 = 2*2*lgx lg²x - 4lgx + 4 = 0 lgx = t t² - 4t + 4=0 D₁ = 4-4=0 t = 2 lgx = 2 x = 100