Срочно , помогите с решением задачи по эконометрике, кому не сложно . нужно расписать....

0 голосов
29 просмотров

Срочно , помогите с решением задачи по эконометрике, кому не сложно .
нужно расписать. заранее спасибо. 5 букв в имени 6 в фамилии


image

Экономика (1.2k баллов) | 29 просмотров
Дан 1 ответ
0 голосов

Требуется:

1. Построить линейную модель множественной регрессии. Записать стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния

на результат.

Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их.

Найти скорректированный коэффициент множественной детерминации. Сравнить его с нескорректированным (общим) коэффициентом детерминации.

С помощью F-критерия Фишера оценить статистическую надежность уравнения регрессии и коэффициента детерминации  .

С помощью t-критерия оценить статистическую значимость коэффициентов чистой регрессии.

С помощью частных F-критериев Фишера оценить целесообразность включения в уравнение множественной регрессии фактора x1 после x2 и фактора x2 после x1.

Составить уравнение линейной парной регрессии, оставив лишь один значащий фактор.

Решение

Для удобства проведения расчетов поместим результаты промежуточных расчетов в таблицу:

Таблица 2.1

у

X1

X2

ух1

ух2

x1x2

x12

х22

у2

1

2

3

4

5

6

7

8

9

10

1

7,0

3,9

10,0

27,3

70,0

39,0

15,21

100,0

49,0

2

7,0

3,9

14,0

27,3

98,0

54,6

15,21

196,0

49,0

3

7,0

3,7

15,0

25,9

105,0

55,5

13,69

225,0

49,0

4

7,0

4,0

16,0

28,0

112,0

64,0

16,0

256,0

49,0

5

7,0

3,8

17,0

26,6

119,0

64,6

14,44

289,0

49,0

6

7,0

4,8

19,0

33,6

133,0

91,2

23,04

361,0

49,0

7

8,0

5,4

19,0

43,2

152,0

102,6

29,16

361,0

64,0

8

8,0

4,4

20,0

35,2

160,0

88,0

19,36

400,0

64,0

9

8,0

5,3

20,0

42,4

160,0

106,0

28,09

400,0

64,0

10

10,0

6,8

20,0

68,0

200,0

136,0

46,24

400,0

100,0

11

9,0

6,0

21,0

54,0

189,0

126,0

36,0

441,0

81,0

12

11,0

6,4

22,0

70,4

242,0

140,8

40,96

484,0

121,0

13

9,0

6,8

22,0

61,2

198,0

149,6

46,24

484,0

81,0

14

11,0

7,2

25,0

79,2

275,0

180,0

51,84

625,0

121,0

15

12,0

8,0

28,0

96,0

336,0

224,0

64,0

784,0

144,0

16

12,0

8,2

29,0

98,4

348,0

237,8

67,24

841,0

144,0

17

12,0

8,1

30,0

97,2

360,0

243,0

65,61

900,0

144,0

18

12,0

8,5

31,0

102,0

372,0

263,5

72,25

961,0

144,0

19

14,0

9,6

32,0

134,4

448,0

307,2

92,16

1024,0

196,0

20

14,0

9,0

36,0

126,0

504,0

324,0

81,0

1296,0

196,0

Сумма

192

123,8

446

1276,3

4581

2997,4

837,74

10828,0

1958,0

Ср. знач.

9,6

6,19

22,3

63,815

229,05

149,87

41,887

541,4

97,9

Найдем средние квадратические отклонения признаков:

Для нахождения параметров линейного уравнения множественной регрессии

необходимо решить систему линейных уравнений относительно неизвестных параметров а, b1, b2 (2.3), либо воспользоваться готовыми формулами (2.4).

Рассчитаем сначала парные коэффициенты корреляции:

Находим по формулам (2.4) коэффициенты чистой регрессии и параметр a :

Таким образом, получили следующее уравнение множественной регрессии:

Уравнение регрессии показывает, что при увеличении ввода в действие основных фондов на 1% (при неизменном уровне удельного веса рабочих высокой квалификации) выработка продукции на одного рабочего увеличивается в среднем на 0,946 тыс. руб., а при увеличении удельного веса рабочих высокой квалификации в общей численности рабочих на 1% (при неизменном уровне ввода в действие новых основных фондов) выработка продукции на одного рабочего увеличивается в среднем на 0,086 тыс. руб.

После нахождения уравнения регрессии составим новую расчетную таблицу для определения теоретических значений результативного признака, остаточной дисперсии и средней ошибки аппроксимации.


(106 баллов)