![\left\{\begin{array}{I} |x^2+5x|<6 \\ |x+1|\leq 1\end{array}} \left\{\begin{array}{I} |x^2+5x|<6 \\ |x+1|\leq 1\end{array}}](https://tex.z-dn.net/?f=+%5Cleft%5C%7B%5Cbegin%7Barray%7D%7BI%7D+%7Cx%5E2%2B5x%7C%3C6++%5C%5C+%7Cx%2B1%7C%5Cleq+1%5Cend%7Barray%7D%7D++)
Решаем неравенства
![1)\\ |x^2+5x|<6 1)\\ |x^2+5x|<6](https://tex.z-dn.net/?f=+1%29%5C%5C+%7Cx%5E2%2B5x%7C%3C6+)
Найдем нули подмодульного выражения
![x^2+5x=0\\ x(x+5)=0\\ x=0 \ \ \ \ \ x=-5 x^2+5x=0\\ x(x+5)=0\\ x=0 \ \ \ \ \ x=-5](https://tex.z-dn.net/?f=+x%5E2%2B5x%3D0%5C%5C+x%28x%2B5%29%3D0%5C%5C+x%3D0+%5C+%5C+%5C+%5C+%5C+x%3D-5+)
Решаем неравенство на интервалах
![1.1) \ x \in (-\infty; \ -5] \cup [ 0; \ + \infty)\\ x^2+5x<6\\ x^2+5x-6<0\\ x^2-x+6x-6<0\\ x(x-1)+6(x-1)<0\\ (x-1)(x+6)<0\\ x \in (-6; \ 1) 1.1) \ x \in (-\infty; \ -5] \cup [ 0; \ + \infty)\\ x^2+5x<6\\ x^2+5x-6<0\\ x^2-x+6x-6<0\\ x(x-1)+6(x-1)<0\\ (x-1)(x+6)<0\\ x \in (-6; \ 1)](https://tex.z-dn.net/?f=+1.1%29+%5C+x+%5Cin+%28-%5Cinfty%3B+%5C+-5%5D+%5Ccup+%5B+0%3B+%5C+%2B+%5Cinfty%29%5C%5C+x%5E2%2B5x%3C6%5C%5C+x%5E2%2B5x-6%3C0%5C%5C+x%5E2-x%2B6x-6%3C0%5C%5C+x%28x-1%29%2B6%28x-1%29%3C0%5C%5C+%28x-1%29%28x%2B6%29%3C0%5C%5C+x+%5Cin+%28-6%3B+%5C+1%29+)
С учетом интервала
![x \in (-6; \ -5] \cup [0; \ 1) x \in (-6; \ -5] \cup [0; \ 1)](https://tex.z-dn.net/?f=+x+%5Cin+%28-6%3B+%5C+-5%5D+%5Ccup+%5B0%3B+%5C+1%29+)
-6\\ x^2+5x+6>0\\ x^2+2x+3x+6>0\\ x(x+2)+3(x+2)>0\\ (x+2)(x+3)>0\\ x \in (- \infty; \ -3) \cup (-2; \ + \infty) " alt=" 1.2) \ x \in (-5; \ 0)\\ x^2+5x>-6\\ x^2+5x+6>0\\ x^2+2x+3x+6>0\\ x(x+2)+3(x+2)>0\\ (x+2)(x+3)>0\\ x \in (- \infty; \ -3) \cup (-2; \ + \infty) " align="absmiddle" class="latex-formula">
С учетом интервала
![x \in (-5; \ -3) \cup (-2; \ 0) x \in (-5; \ -3) \cup (-2; \ 0)](https://tex.z-dn.net/?f=+x+%5Cin+%28-5%3B+%5C+-3%29+%5Ccup+%28-2%3B+%5C+0%29+)
С неравенства имеем
![x \in (-6; \ -3) \cup (-2; \ 1) x \in (-6; \ -3) \cup (-2; \ 1)](https://tex.z-dn.net/?f=+x+%5Cin+%28-6%3B+%5C+-3%29+%5Ccup+%28-2%3B+%5C+1%29+)
![2)\\ |x+1|\leq 1 2)\\ |x+1|\leq 1](https://tex.z-dn.net/?f=+2%29%5C%5C+%7Cx%2B1%7C%5Cleq+1+)
Найдем нуль подмодульного выражения
![x+1=0\\ x=-1 x+1=0\\ x=-1](https://tex.z-dn.net/?f=+x%2B1%3D0%5C%5C+x%3D-1+)
Решаем неравенство на интервалах
![2.1) \ x \in (- \infty; \ -1)\\ x+1\geq -1\\ x\geq -2 2.1) \ x \in (- \infty; \ -1)\\ x+1\geq -1\\ x\geq -2](https://tex.z-dn.net/?f=+2.1%29+%5C+x+%5Cin+%28-+%5Cinfty%3B+%5C+-1%29%5C%5C+x%2B1%5Cgeq+-1%5C%5C+x%5Cgeq+-2+)
С учетом интервала
![x \in [-2; \ -1) x \in [-2; \ -1)](https://tex.z-dn.net/?f=+x+%5Cin+%5B-2%3B+%5C+-1%29+)
![2.2) \ x \in [-1; \ + \infty)\\ x+1\leq 1\\ x\leq 0 2.2) \ x \in [-1; \ + \infty)\\ x+1\leq 1\\ x\leq 0](https://tex.z-dn.net/?f=+2.2%29+%5C+x+%5Cin+%5B-1%3B+%5C+%2B+%5Cinfty%29%5C%5C+x%2B1%5Cleq+1%5C%5C+x%5Cleq+0+)
С учетом интервала
![x \in [-1; \ 0] x \in [-1; \ 0]](https://tex.z-dn.net/?f=+x+%5Cin+%5B-1%3B+%5C+0%5D+)
С неравенства имеем
![x \in [-2; \ 0] x \in [-2; \ 0]](https://tex.z-dn.net/?f=+x+%5Cin+%5B-2%3B+%5C+0%5D+)
С системы имеем
![x \in (-2; \ 0] x \in (-2; \ 0]](https://tex.z-dn.net/?f=+x+%5Cin+%28-2%3B+%5C+0%5D+)
Ответ: x∈(-2; 0]