(0,9)^{2x}\\\\ (\sqrt{0,9} )^{45-x^2}>(0,9)^{2x}\\\\ (0,9)^{\frac{45-x^2}{2}} >(0,9)^{2x}\\\\ \frac{45-x^2}{2}<2x\\\\ 45-x^2<4x\\\\ x^2+4x-45>0\\\\ D=16+180=196=14^2\\\\ x_1=\frac{-4-14}{2} =-9\\\\ x_2=\frac{-4+14}{2} =5\\\\ x \in (-\infty;-9)U(5;+\infty) " alt=" (\sqrt{\frac{10}{9}} )^{x^2-45}>(0,9)^{2x}\\\\ (\sqrt{0,9} )^{45-x^2}>(0,9)^{2x}\\\\ (0,9)^{\frac{45-x^2}{2}} >(0,9)^{2x}\\\\ \frac{45-x^2}{2}<2x\\\\ 45-x^2<4x\\\\ x^2+4x-45>0\\\\ D=16+180=196=14^2\\\\ x_1=\frac{-4-14}{2} =-9\\\\ x_2=\frac{-4+14}{2} =5\\\\ x \in (-\infty;-9)U(5;+\infty) " align="absmiddle" class="latex-formula">
Ответ: (-∞;-9) U (5; +∞)