а)
![3x-5\geq 0;~~~3x\geq 5;~~~x\geq \dfrac{5}{3}\\ \\ x\geq 1\dfrac{2}{3} 3x-5\geq 0;~~~3x\geq 5;~~~x\geq \dfrac{5}{3}\\ \\ x\geq 1\dfrac{2}{3}](https://tex.z-dn.net/?f=+3x-5%5Cgeq+0%3B%7E%7E%7E3x%5Cgeq+5%3B%7E%7E%7Ex%5Cgeq+%5Cdfrac%7B5%7D%7B3%7D%5C%5C+%5C%5C+x%5Cgeq+1%5Cdfrac%7B2%7D%7B3%7D+)
![\boldsymbol{x \in [1\dfrac{2}{3};+\infty) } \boldsymbol{x \in [1\dfrac{2}{3};+\infty) }](https://tex.z-dn.net/?f=+%5Cboldsymbol%7Bx+%5Cin+%5B1%5Cdfrac%7B2%7D%7B3%7D%3B%2B%5Cinfty%29+%7D+)
б)
![x^2 - 9 < 0;~~~(x-3)(x+3)<0 x^2 - 9 < 0;~~~(x-3)(x+3)<0](https://tex.z-dn.net/?f=+x%5E2+-+9+%3C+0%3B%7E%7E%7E%28x-3%29%28x%2B3%29%3C0+)
Метод интервалов x₁ = -3; x₂ = 3
+++++++++(-3)------------(3)+++++++++>x
x∈(-3; 3)
в)
![x^2+4x-5 \geq 0 \\ (x + 5)(x-1)\geq 0 x^2+4x-5 \geq 0 \\ (x + 5)(x-1)\geq 0](https://tex.z-dn.net/?f=+x%5E2%2B4x-5+%5Cgeq+0+%5C%5C+%28x+%2B+5%29%28x-1%29%5Cgeq+0+)
Метод интервалов x₁ = -5; x₂ = 1
+++++++++[-5]------------[1]+++++++++>x
x∈(-∞; -5]∪[1; +∞)
г) Использовать периодичность функций
cos(-330°) sin (-225°) =
= cos(-330° + 360°) sin (-225° + 360°) =
= cos 30° · sin 135° =
![=\dfrac{\sqrt{3}}{2} \cdot \dfrac{\sqrt{2}}{2} = \boldsymbol{\dfrac{\sqrt{6}}{4}} =\dfrac{\sqrt{3}}{2} \cdot \dfrac{\sqrt{2}}{2} = \boldsymbol{\dfrac{\sqrt{6}}{4}}](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D+%5Ccdot+%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D+%3D+%5Cboldsymbol%7B%5Cdfrac%7B%5Csqrt%7B6%7D%7D%7B4%7D%7D)