20) ![\frac{1}{x^{2} + 2x + 4} - \frac{1}{x^{2}+2x + 5} = \frac{1}{12} \frac{1}{x^{2} + 2x + 4} - \frac{1}{x^{2}+2x + 5} = \frac{1}{12}](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7Bx%5E%7B2%7D+%2B+2x+%2B+4%7D+-+%5Cfrac%7B1%7D%7Bx%5E%7B2%7D%2B2x+%2B+5%7D+%3D+%5Cfrac%7B1%7D%7B12%7D+)
ОДЗ:
1) x² + 2x + 4 ≠ 0
D = 4 - 4 × 1 × 4 = -12 < 0 ⇒ x ∉ R
2) x² + 2x + 5 ≠ 0
D = 4 - 4 × 1 × 5 = -16 < 0 ⇒ x ∉ R
![\frac{1}{x^{2} + 2x + 4} - \frac{1}{x^{2}+2x + 5} - \frac{1}{12}=0 \frac{1}{x^{2} + 2x + 4} - \frac{1}{x^{2}+2x + 5} - \frac{1}{12}=0](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7Bx%5E%7B2%7D+%2B+2x+%2B+4%7D+-+%5Cfrac%7B1%7D%7Bx%5E%7B2%7D%2B2x+%2B+5%7D+-+%5Cfrac%7B1%7D%7B12%7D%3D0+)
Запишем все числители над общим знаменателем:
![\frac{12(x^{2}+2x+5)-12(x^{2}+2x+4)-(x^{2}+2x+4)+(x^{2}+2x+5)}{12(x^{2}+2x+4)(x^{2}+2x+5)} =0 \frac{12(x^{2}+2x+5)-12(x^{2}+2x+4)-(x^{2}+2x+4)+(x^{2}+2x+5)}{12(x^{2}+2x+4)(x^{2}+2x+5)} =0](https://tex.z-dn.net/?f=+%5Cfrac%7B12%28x%5E%7B2%7D%2B2x%2B5%29-12%28x%5E%7B2%7D%2B2x%2B4%29-%28x%5E%7B2%7D%2B2x%2B4%29%2B%28x%5E%7B2%7D%2B2x%2B5%29%7D%7B12%28x%5E%7B2%7D%2B2x%2B4%29%28x%5E%7B2%7D%2B2x%2B5%29%7D+%3D0++++)
Раскроем модуль:
![\frac{12x^{2}+24x+60-12x^{2}-24x-48-(x^{4}+2x^{3}+5x^{2}+2x^{3}+4x^{2}+10x+4x^{2}+8x +20)}{12(x^{2}+2x+4)(x^{2}+2x+5)} =0 \frac{12x^{2}+24x+60-12x^{2}-24x-48-(x^{4}+2x^{3}+5x^{2}+2x^{3}+4x^{2}+10x+4x^{2}+8x +20)}{12(x^{2}+2x+4)(x^{2}+2x+5)} =0](https://tex.z-dn.net/?f=+%5Cfrac%7B12x%5E%7B2%7D%2B24x%2B60-12x%5E%7B2%7D-24x-48-%28x%5E%7B4%7D%2B2x%5E%7B3%7D%2B5x%5E%7B2%7D%2B2x%5E%7B3%7D%2B4x%5E%7B2%7D%2B10x%2B4x%5E%7B2%7D%2B8x+%2B20%29%7D%7B12%28x%5E%7B2%7D%2B2x%2B4%29%28x%5E%7B2%7D%2B2x%2B5%29%7D+%3D0+++++++++++)
Сократим противоположные выражения; раскроем скобки; приведём подобные члены:
![\frac{-8-x^{4}-4x^{3}-13x^{2}-18x}{12(x^{2}+2x+4)(x^{2}+2x+5)} =0 \frac{-8-x^{4}-4x^{3}-13x^{2}-18x}{12(x^{2}+2x+4)(x^{2}+2x+5)} =0](https://tex.z-dn.net/?f=+%5Cfrac%7B-8-x%5E%7B4%7D-4x%5E%7B3%7D-13x%5E%7B2%7D-18x%7D%7B12%28x%5E%7B2%7D%2B2x%2B4%29%28x%5E%7B2%7D%2B2x%2B5%29%7D+%3D0+++++++++++++)
Решить уравнение:
![-8-x^{4}-4x^{3}-13x^{2}-18x = 0 -8-x^{4}-4x^{3}-13x^{2}-18x = 0](https://tex.z-dn.net/?f=+-8-x%5E%7B4%7D-4x%5E%7B3%7D-13x%5E%7B2%7D-18x+%3D+0++++)
![-x^{3}(x+1)-3x^{2} (x+1)-10x(x+1)-8(x+1)=0 -x^{3}(x+1)-3x^{2} (x+1)-10x(x+1)-8(x+1)=0](https://tex.z-dn.net/?f=+-x%5E%7B3%7D%28x%2B1%29-3x%5E%7B2%7D+%28x%2B1%29-10x%28x%2B1%29-8%28x%2B1%29%3D0+)
![-(x+1)(x^{3}+3x^{2}+10x+8) = 0 -(x+1)(x^{3}+3x^{2}+10x+8) = 0](https://tex.z-dn.net/?f=+-%28x%2B1%29%28x%5E%7B3%7D%2B3x%5E%7B2%7D%2B10x%2B8%29+%3D+0+++)
![-(x+1)(x^{3}+x^{2}+2x+8x+8) = 0 -(x+1)(x^{3}+x^{2}+2x+8x+8) = 0](https://tex.z-dn.net/?f=+-%28x%2B1%29%28x%5E%7B3%7D%2Bx%5E%7B2%7D%2B2x%2B8x%2B8%29+%3D+0+++)
![-(x+1)(x^{2}(x+1)+2x(x+1)+8(x+1)) = 0 -(x+1)(x^{2}(x+1)+2x(x+1)+8(x+1)) = 0](https://tex.z-dn.net/?f=+-%28x%2B1%29%28x%5E%7B2%7D%28x%2B1%29%2B2x%28x%2B1%29%2B8%28x%2B1%29%29+%3D+0++)
![-(x+1)^{2} (x^{2}+2x+8) = 0 -(x+1)^{2} (x^{2}+2x+8) = 0](https://tex.z-dn.net/?f=+-%28x%2B1%29%5E%7B2%7D+%28x%5E%7B2%7D%2B2x%2B8%29+%3D+0++)
⇒
⇒ ![x = -1 x = -1](https://tex.z-dn.net/?f=+x+%3D+-1+)
⇒
⇒ x ∉ R
Ответ: х = -1
21)![(x^{2}-5x)^{2} -30x(x-5)-216=0 (x^{2}-5x)^{2} -30x(x-5)-216=0](https://tex.z-dn.net/?f=+%28x%5E%7B2%7D-5x%29%5E%7B2%7D++-30x%28x-5%29-216%3D0+)
ОДЗ: все числа (x ∈ R)
Раскроем скобки; приведём подобные члены:
![x^{4} - 10x^{3} + 25x^{2} - 30x^{2} + 150x - 216 = 0 x^{4} - 10x^{3} + 25x^{2} - 30x^{2} + 150x - 216 = 0](https://tex.z-dn.net/?f=+x%5E%7B4%7D+-+10x%5E%7B3%7D+%2B+25x%5E%7B2%7D+-+30x%5E%7B2%7D++%2B+150x+-+216+%3D+0+)
Разложим на множители:
![x^{4} - 2x^{3} - 8x^{3} + 16x^{2} -21x^{2} +42x + 108x - 216 = 0 x^{4} - 2x^{3} - 8x^{3} + 16x^{2} -21x^{2} +42x + 108x - 216 = 0](https://tex.z-dn.net/?f=+x%5E%7B4%7D+-+2x%5E%7B3%7D+-+8x%5E%7B3%7D+%2B+16x%5E%7B2%7D+++-21x%5E%7B2%7D+%2B42x+%2B+108x+-+216+%3D+0+)
![x^{3}(x-2)-8x^{2} (x-2)-21x(x-2)+108(x-2)=0 x^{3}(x-2)-8x^{2} (x-2)-21x(x-2)+108(x-2)=0](https://tex.z-dn.net/?f=+x%5E%7B3%7D%28x-2%29-8x%5E%7B2%7D+%28x-2%29-21x%28x-2%29%2B108%28x-2%29%3D0+)
Запишем в виде разности:
![(x-2)(x^{3}-8x^{2}-21x + 108) =0 (x-2)(x^{3}-8x^{2}-21x + 108) =0](https://tex.z-dn.net/?f=+%28x-2%29%28x%5E%7B3%7D-8x%5E%7B2%7D-21x+%2B+108%29+%3D0++)
Разложим на множители:
![(x-2)(x^{3}-3x^{2}-5x^{2}+15x-36x+108) = 0 (x-2)(x^{3}-3x^{2}-5x^{2}+15x-36x+108) = 0](https://tex.z-dn.net/?f=+%28x-2%29%28x%5E%7B3%7D-3x%5E%7B2%7D-5x%5E%7B2%7D%2B15x-36x%2B108%29+%3D+0++++)
![(x-2)(x^{2}(x-3)-5x(x-3)-36(x-3))=0 (x-2)(x^{2}(x-3)-5x(x-3)-36(x-3))=0](https://tex.z-dn.net/?f=+%28x-2%29%28x%5E%7B2%7D%28x-3%29-5x%28x-3%29-36%28x-3%29%29%3D0++)
![(x-2)(x-3)(x^{2}-5x-36) =0 (x-2)(x-3)(x^{2}-5x-36) =0](https://tex.z-dn.net/?f=+%28x-2%29%28x-3%29%28x%5E%7B2%7D-5x-36%29+%3D0+)
Решим 3 уравнения:
⇒ ![x = 2 x = 2](https://tex.z-dn.net/?f=+x+%3D+2+)
⇒ ![x = 3 x = 3](https://tex.z-dn.net/?f=+x+%3D+3+)
⇒
⇒ ![x_{1} =-4; x_{2} =9 x_{1} =-4; x_{2} =9](https://tex.z-dn.net/?f=+x_%7B1%7D+%3D-4%3B+x_%7B2%7D+%3D9+)
Ответ: x₁ = -4; x₂ = 2; x₃ = 3; x₄ = 9.