0 \\ 3x - {x}^{2} + 18 \geqslant 0 \\ \\ x > - 1 \\ {x}^{2} - 3x - 18 \leqslant 0 \\ {x}^{2} - 3x - 18 = 0 \\ d = {3}^{2} + 18 \times 4 = 81 = {9}^{2} \\ x = \frac{3 - 9}{2} = - 3 \\ x = \frac{3 + 9}{2} = 6" alt="y = \frac{ \sqrt{3x - x^{2} + 18 } }{ \sqrt{x + 1} } \\ x + 1 > 0 \\ 3x - {x}^{2} + 18 \geqslant 0 \\ \\ x > - 1 \\ {x}^{2} - 3x - 18 \leqslant 0 \\ {x}^{2} - 3x - 18 = 0 \\ d = {3}^{2} + 18 \times 4 = 81 = {9}^{2} \\ x = \frac{3 - 9}{2} = - 3 \\ x = \frac{3 + 9}{2} = 6" align="absmiddle" class="latex-formula">
y=x²-3x-18 - квадратичная функция, график - парабола, ветви вверх
x>-1
-3<=x<=6<br>Ответ: -1<x<=6