производная по определению:
где
![\Delta y =f(x+\Delta x)-f(x) \Delta y =f(x+\Delta x)-f(x)](https://tex.z-dn.net/?f=++%5CDelta+y+%3Df%28x%2B%5CDelta+x%29-f%28x%29+)
необходимое и достаточное условие существование производной:
, то есть
![\lim_{\Delta x \to -0} \frac{\Delta y}{\Delta x} =\lim_{\Delta x \to +0} \frac{\Delta y}{\Delta x} \lim_{\Delta x \to -0} \frac{\Delta y}{\Delta x} =\lim_{\Delta x \to +0} \frac{\Delta y}{\Delta x}](https://tex.z-dn.net/?f=+%5Clim_%7B%5CDelta+x+%5Cto+-0%7D+%5Cfrac%7B%5CDelta+y%7D%7B%5CDelta+x%7D+%3D%5Clim_%7B%5CDelta+x+%5Cto+%2B0%7D+%5Cfrac%7B%5CDelta+y%7D%7B%5CDelta+x%7D++)
![a) f(x)=|x^3| \\ \Delta y=|(x+\Delta x)^3|-|x^3| a) f(x)=|x^3| \\ \Delta y=|(x+\Delta x)^3|-|x^3|](https://tex.z-dn.net/?f=+a%29+f%28x%29%3D%7Cx%5E3%7C+%5C%5C+%5CDelta+y%3D%7C%28x%2B%5CDelta+x%29%5E3%7C-%7Cx%5E3%7C+)
нужно определить, существует ли производная в точке x=0, поэтому подставляем вместо х нуль:
![\Delta y=|(0+\Delta x)^3|-|0^3|=|(\Delta x)^3| \Delta y=|(0+\Delta x)^3|-|0^3|=|(\Delta x)^3|](https://tex.z-dn.net/?f=+%5CDelta+y%3D%7C%280%2B%5CDelta+x%29%5E3%7C-%7C0%5E3%7C%3D%7C%28%5CDelta+x%29%5E3%7C+)
Напомню, что когда под модулем стоит положительное число, то знак модуля просто убирается,
а если отрицательное, то знак модуля также убирается, но впереди ставится знак минус!
Левосторонний предел:
![f'(x_0-0)= \lim_{\Delta x \to -0} \ \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to -0} \ \frac{|(\Delta x )^3|}{\Delta x}=\lim_{\Delta x \to -0} \ \frac{-(\Delta x)^3}{\Delta x} \\ \\ =\lim_{\Delta x \to -0} \ -(\Delta x)^2=\lim_{\Delta x \to -0} \ -(-0)^2=0 f'(x_0-0)= \lim_{\Delta x \to -0} \ \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to -0} \ \frac{|(\Delta x )^3|}{\Delta x}=\lim_{\Delta x \to -0} \ \frac{-(\Delta x)^3}{\Delta x} \\ \\ =\lim_{\Delta x \to -0} \ -(\Delta x)^2=\lim_{\Delta x \to -0} \ -(-0)^2=0](https://tex.z-dn.net/?f=+f%27%28x_0-0%29%3D+%5Clim_%7B%5CDelta+x+%5Cto+-0%7D+%5C+%5Cfrac%7B%5CDelta+y%7D%7B%5CDelta+x%7D+%3D+%5Clim_%7B%5CDelta+x+%5Cto+-0%7D+%5C+%5Cfrac%7B%7C%28%5CDelta+x+%29%5E3%7C%7D%7B%5CDelta+x%7D%3D%5Clim_%7B%5CDelta+x+%5Cto+-0%7D+%5C+%5Cfrac%7B-%28%5CDelta+x%29%5E3%7D%7B%5CDelta+x%7D+%5C%5C+%5C%5C+%3D%5Clim_%7B%5CDelta+x+%5Cto+-0%7D+%5C+-%28%5CDelta+x%29%5E2%3D%5Clim_%7B%5CDelta+x+%5Cto+-0%7D+%5C+-%28-0%29%5E2%3D0+)
Аналогично для правостороннего:
![f'(x_0+0)= \lim_{\Delta x \to+0} \ \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to +0} \ \frac{|(\Delta x )^3|}{\Delta x}=\lim_{\Delta x \to +0} \ \frac{(\Delta x)^3}{\Delta x} \\ \\ =\lim_{\Delta x \to +0} \ (\Delta x)^2=\lim_{\Delta x \to +0} \ (+0)^2=0 f'(x_0+0)= \lim_{\Delta x \to+0} \ \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to +0} \ \frac{|(\Delta x )^3|}{\Delta x}=\lim_{\Delta x \to +0} \ \frac{(\Delta x)^3}{\Delta x} \\ \\ =\lim_{\Delta x \to +0} \ (\Delta x)^2=\lim_{\Delta x \to +0} \ (+0)^2=0](https://tex.z-dn.net/?f=+f%27%28x_0%2B0%29%3D+%5Clim_%7B%5CDelta+x+%5Cto%2B0%7D+%5C+%5Cfrac%7B%5CDelta+y%7D%7B%5CDelta+x%7D+%3D+%5Clim_%7B%5CDelta+x+%5Cto+%2B0%7D+%5C+%5Cfrac%7B%7C%28%5CDelta+x+%29%5E3%7C%7D%7B%5CDelta+x%7D%3D%5Clim_%7B%5CDelta+x+%5Cto+%2B0%7D+%5C+%5Cfrac%7B%28%5CDelta+x%29%5E3%7D%7B%5CDelta+x%7D+%5C%5C+%5C%5C+%3D%5Clim_%7B%5CDelta+x+%5Cto+%2B0%7D+%5C+%28%5CDelta+x%29%5E2%3D%5Clim_%7B%5CDelta+x+%5Cto+%2B0%7D+%5C+%28%2B0%29%5E2%3D0+)
f'(x_0-0)=f'(x_0+0) ⇒ производная существует в точке х=0
б)
![\Delta y=|x+\Delta x|+x+\Delta x - (|x|+x)=|0+\Delta x|+0+\Delta x - (|0|+0)= \\ \\ =|\Delta x| +\Delta x \\ \\ 1) \lim_{\Delta x \to -0} \frac{\Delta y}{\Delta x} =\lim_{\Delta x \to -0} \frac{|\Delta x| +\Delta x}{\Delta x} =\lim_{\Delta x \to -0} \frac{-\Delta x +\Delta x}{\Delta x} =0\\ \\ 2)\lim_{\Delta x \to +0} \frac{|\Delta x| +\Delta x}{\Delta x} =\lim_{\Delta x \to +0} \frac{\Delta x +\Delta x}{\Delta x} =2 \Delta y=|x+\Delta x|+x+\Delta x - (|x|+x)=|0+\Delta x|+0+\Delta x - (|0|+0)= \\ \\ =|\Delta x| +\Delta x \\ \\ 1) \lim_{\Delta x \to -0} \frac{\Delta y}{\Delta x} =\lim_{\Delta x \to -0} \frac{|\Delta x| +\Delta x}{\Delta x} =\lim_{\Delta x \to -0} \frac{-\Delta x +\Delta x}{\Delta x} =0\\ \\ 2)\lim_{\Delta x \to +0} \frac{|\Delta x| +\Delta x}{\Delta x} =\lim_{\Delta x \to +0} \frac{\Delta x +\Delta x}{\Delta x} =2](https://tex.z-dn.net/?f=+%5CDelta+y%3D%7Cx%2B%5CDelta+x%7C%2Bx%2B%5CDelta+x+-+%28%7Cx%7C%2Bx%29%3D%7C0%2B%5CDelta+x%7C%2B0%2B%5CDelta+x+-+%28%7C0%7C%2B0%29%3D+%5C%5C+%5C%5C+%3D%7C%5CDelta+x%7C+%2B%5CDelta+x+%5C%5C+%5C%5C+1%29+%5Clim_%7B%5CDelta+x+%5Cto+-0%7D+%5Cfrac%7B%5CDelta+y%7D%7B%5CDelta+x%7D+%3D%5Clim_%7B%5CDelta+x+%5Cto+-0%7D+%5Cfrac%7B%7C%5CDelta+x%7C+%2B%5CDelta+x%7D%7B%5CDelta+x%7D+%3D%5Clim_%7B%5CDelta+x+%5Cto+-0%7D+%5Cfrac%7B-%5CDelta+x+%2B%5CDelta+x%7D%7B%5CDelta+x%7D+%3D0%5C%5C+%5C%5C+2%29%5Clim_%7B%5CDelta+x+%5Cto+%2B0%7D+%5Cfrac%7B%7C%5CDelta+x%7C+%2B%5CDelta+x%7D%7B%5CDelta+x%7D+%3D%5Clim_%7B%5CDelta+x+%5Cto+%2B0%7D+%5Cfrac%7B%5CDelta+x+%2B%5CDelta+x%7D%7B%5CDelta+x%7D+%3D2+)
f'(x_0-0)≠f'(x_0+0) ⇒ производная не существует в точке х=0
в)
![\Delta y=sin(\frac{1}{x+\Delta x} )-sin(\frac{1}{ x} )=sin(\frac{1}{\Delta x})-sin(\infty)\\ \\ 1) \lim_{\Delta x \to -0} \frac{sin(\frac{1}{\Delta x})-sin(\infty)}{\Delta x} =\frac{sin(\infty)-sin(\infty)}{0} \Delta y=sin(\frac{1}{x+\Delta x} )-sin(\frac{1}{ x} )=sin(\frac{1}{\Delta x})-sin(\infty)\\ \\ 1) \lim_{\Delta x \to -0} \frac{sin(\frac{1}{\Delta x})-sin(\infty)}{\Delta x} =\frac{sin(\infty)-sin(\infty)}{0}](https://tex.z-dn.net/?f=+%5CDelta+y%3Dsin%28%5Cfrac%7B1%7D%7Bx%2B%5CDelta+x%7D+%29-sin%28%5Cfrac%7B1%7D%7B+x%7D+%29%3Dsin%28%5Cfrac%7B1%7D%7B%5CDelta+x%7D%29-sin%28%5Cinfty%29%5C%5C+%5C%5C+1%29++%5Clim_%7B%5CDelta+x+%5Cto+-0%7D+%5Cfrac%7Bsin%28%5Cfrac%7B1%7D%7B%5CDelta+x%7D%29-sin%28%5Cinfty%29%7D%7B%5CDelta+x%7D+%3D%5Cfrac%7Bsin%28%5Cinfty%29-sin%28%5Cinfty%29%7D%7B0%7D++)
Предела не существует ⇒ производной нет
г)
![\Delta y=(x+\Delta x)sin(\frac{1}{x+\Delta x} )-xsin(\frac{1}{ x} )=\Delta x*sin(\frac{1}{\Delta x})\\ \\ 1) \lim_{\Delta x \to -0} \frac{\Delta x*sin(\frac{1}{\Delta x})}{\Delta x} = \lim_{\Delta x \to -0} sin(\frac{1}{\Delta x})=sin(-\infty) \Delta y=(x+\Delta x)sin(\frac{1}{x+\Delta x} )-xsin(\frac{1}{ x} )=\Delta x*sin(\frac{1}{\Delta x})\\ \\ 1) \lim_{\Delta x \to -0} \frac{\Delta x*sin(\frac{1}{\Delta x})}{\Delta x} = \lim_{\Delta x \to -0} sin(\frac{1}{\Delta x})=sin(-\infty)](https://tex.z-dn.net/?f=+%5CDelta+y%3D%28x%2B%5CDelta+x%29sin%28%5Cfrac%7B1%7D%7Bx%2B%5CDelta+x%7D+%29-xsin%28%5Cfrac%7B1%7D%7B+x%7D+%29%3D%5CDelta+x%2Asin%28%5Cfrac%7B1%7D%7B%5CDelta+x%7D%29%5C%5C+%5C%5C+1%29++%5Clim_%7B%5CDelta+x+%5Cto+-0%7D+%5Cfrac%7B%5CDelta+x%2Asin%28%5Cfrac%7B1%7D%7B%5CDelta+x%7D%29%7D%7B%5CDelta+x%7D+%3D+%5Clim_%7B%5CDelta+x+%5Cto+-0%7D+sin%28%5Cfrac%7B1%7D%7B%5CDelta+x%7D%29%3Dsin%28-%5Cinfty%29+)
Предела не существует ⇒ производной нет
д)
![\Delta y=(x+\Delta x)^2sin(\frac{1}{x+\Delta x} )-x^2sin(\frac{1}{ x} )=\Delta x^2*sin(\frac{1}{\Delta x})\\ \\ 1) \lim_{\Delta x \to -0} \frac{\Delta x^2*sin(\frac{1}{\Delta x})}{\Delta x} = \lim_{\Delta x \to -0}\Delta x* sin(\frac{1}{\Delta x})=0\\ \\ 2) \ \lim_{\Delta x \to +0} \frac{\Delta x^2*sin(\frac{1}{\Delta x})}{\Delta x} = \lim_{\Delta x \to +0}\Delta x* sin(\frac{1}{\Delta x})=0 \Delta y=(x+\Delta x)^2sin(\frac{1}{x+\Delta x} )-x^2sin(\frac{1}{ x} )=\Delta x^2*sin(\frac{1}{\Delta x})\\ \\ 1) \lim_{\Delta x \to -0} \frac{\Delta x^2*sin(\frac{1}{\Delta x})}{\Delta x} = \lim_{\Delta x \to -0}\Delta x* sin(\frac{1}{\Delta x})=0\\ \\ 2) \ \lim_{\Delta x \to +0} \frac{\Delta x^2*sin(\frac{1}{\Delta x})}{\Delta x} = \lim_{\Delta x \to +0}\Delta x* sin(\frac{1}{\Delta x})=0](https://tex.z-dn.net/?f=++%5CDelta+y%3D%28x%2B%5CDelta+x%29%5E2sin%28%5Cfrac%7B1%7D%7Bx%2B%5CDelta+x%7D+%29-x%5E2sin%28%5Cfrac%7B1%7D%7B+x%7D+%29%3D%5CDelta+x%5E2%2Asin%28%5Cfrac%7B1%7D%7B%5CDelta+x%7D%29%5C%5C+%5C%5C+1%29++%5Clim_%7B%5CDelta+x+%5Cto+-0%7D+%5Cfrac%7B%5CDelta+x%5E2%2Asin%28%5Cfrac%7B1%7D%7B%5CDelta+x%7D%29%7D%7B%5CDelta+x%7D+%3D+%5Clim_%7B%5CDelta+x+%5Cto+-0%7D%5CDelta+x%2A+sin%28%5Cfrac%7B1%7D%7B%5CDelta+x%7D%29%3D0%5C%5C+%5C%5C+2%29+%5C++%5Clim_%7B%5CDelta+x+%5Cto+%2B0%7D+%5Cfrac%7B%5CDelta+x%5E2%2Asin%28%5Cfrac%7B1%7D%7B%5CDelta+x%7D%29%7D%7B%5CDelta+x%7D+%3D+%5Clim_%7B%5CDelta+x+%5Cto+%2B0%7D%5CDelta+x%2A+sin%28%5Cfrac%7B1%7D%7B%5CDelta+x%7D%29%3D0+)
Так как функция кусочно-заданная, то проверим будет ли она непрерывна в точке х=0
A=B=f(0)=0 ⇒ функция не прерывна
f'(x_0-0)=f'(x_0+0) ⇒ производная существует в точке х=0