Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1 считая от вершины
Так как MN проходит через точку пересечения медиан и параллельна AC, то ΔMBN пропорционален ΔABC с коэффициентом 2/3
Отсюда MN = 2/3 AC = 2/3 * 9 = 6
BN/NC = 2:1
Отношение площадей относится как квадрат коэффициента пропорциональности, таким образом SΔABC : SΔMBN = (3/2)^2 = 9/4