Гострий кут рівнобічної трапеції дорівнює 60°, а більша основа більша за бічну сторону **...

0 голосов
71 просмотров

Гострий кут рівнобічної трапеції дорівнює 60°, а більша основа більша за бічну сторону на 10 см. Знайти меншу основу трапеції, якщо ії діагональ дорівнює 14 см.


Геометрия (276 баллов) | 71 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Дано: чотирикутник ABCD - рівнобічна трапеція (AB = CD); ∠BAD = 60°, BD = 14 см.


Знайти: BC - ?


Розв'язання. Нехай х см - довжина більшої основи (AD) трапеції. Тоді (х - 10)см - довжина бокової сторони трапеції (AB). Скористаємося теоремою косінусів - твердженням про властивість довільних трикутників, що є узагальненням теореми Піфагора.

BD² = AD² + AB² - 2 × AD × AB × cos∠BAD

14² = x² + (x - 10)² - 2 × x × (x - 10) × cos60°

196 = x² + x² - 20x + 100 - 2(x² - 10x) × 1/2

196 = x² - 10x + 100

x² - 10x - 96 = 0

Скористаємося теоремою Вієта:

х₁ + х₂ = 10

х₁ × х₂ = -96

x₁ = -6 (не задовольняє умові задачі); x₂ = 16

Тоді АD = 16 см, а AB = 16 - 10 = 6 см.

Для того, щоб знайти меншу основу рівнобічної трапеції проведемо дві висоти ВК та СМ з точок В і С відповідно (див. рисунок). Вони утворюють прямокутник, у якого менша основа трапеції ВС дорівнює відрізку КМ, який належить більшій основі AD.

KM = AD - AK - MD = AD - 2AK (тому що AK = MD).

Щоб знайти відрізок АК, розглянемо трикутник АВК (∠AKB = 90°):

cosα = AK/AB ⇒ AK = AB × cosα = 6 × 1/2 = 3 (cм)

Отже, KM = AD - 2AK = 16 - 2 × 3 = 10 (см) = BC


Відповідь: ВС = 10 см.


image
(4.2k баллов)
0

Чому ти скористався теоремою косинусів, якщо утворений діагоналлю BD трикутник АВD не є прямокутним?

0

Теорема косинусів застосовується для різносторонніх трикутників з різними кутами. Якщо трикутник прямокутний, то теорема косинусів стає теоремою Піфагора.

0

А, дякую)