![image](https://tex.z-dn.net/?f=+%7B%28x+-+6%29%7D%5E%7B2%7D+%281+-+log_%7B+%5Cfrac%7B1%7D%7B7%7D+%7D%28x+-+1%29+%29+%3E+0+%5C%5C+odz+%5C%5C+%5C%3A+x+-+1+%3E+0+%5C%5C+x+%3E+1+%5C%5C+%7B%28x+-+6%29%7D%5E%7B2%7D+%281+-+log_%7B+%5Cfrac%7B1%7D%7B7%7D+%7D%28x+-+1%29+%29+%3D+0+%5C%5C+%7B%28x+-+6%29%7D%5E%7B2%7D+%3D+0+%5C%3A+%5C%3A+%5C%3A+%5C%3A+and+%5C%3A+%5C%3A+%5C%3A+1+-+log_%7B+%5Cfrac%7B1%7D%7B7%7D+%7D%28x+-+1%29+%3D+0+%5C%5C+x+%3D+6+%5C%3A+%5C%3A+and+%5C%3A+%5C%3A+%5C%3A+log_%7B+%5Cfrac%7B1%7D%7B7%7D+%7D%28x+-+1%29+%3D+1+%5C%5C+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+x+-+1+%3D+%5Cfrac%7B1%7D%7B7+%7D+%5C%5C+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+%5C%3A+x+%3D+%5Cfrac%7B8%7D%7B7%7D+%5C%5C+x%5Cin%28+%5Cfrac%7B8%7D%7B7%7D+%3B6%29%5Ccup%286%3B+%2B+%5Cinfty%29)
0 \\ odz \\ \: x - 1 > 0 \\ x > 1 \\ {(x - 6)}^{2} (1 - log_{ \frac{1}{7} }(x - 1) ) = 0 \\ {(x - 6)}^{2} = 0 \: \: \: \: and \: \: \: 1 - log_{ \frac{1}{7} }(x - 1) = 0 \\ x = 6 \: \: and \: \: \: log_{ \frac{1}{7} }(x - 1) = 1 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: x - 1 = \frac{1}{7 } \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: x = \frac{8}{7} \\ x\in( \frac{8}{7} ;6)\cup(6; + \infty)" alt=" {(x - 6)}^{2} (1 - log_{ \frac{1}{7} }(x - 1) ) > 0 \\ odz \\ \: x - 1 > 0 \\ x > 1 \\ {(x - 6)}^{2} (1 - log_{ \frac{1}{7} }(x - 1) ) = 0 \\ {(x - 6)}^{2} = 0 \: \: \: \: and \: \: \: 1 - log_{ \frac{1}{7} }(x - 1) = 0 \\ x = 6 \: \: and \: \: \: log_{ \frac{1}{7} }(x - 1) = 1 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: x - 1 = \frac{1}{7 } \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: x = \frac{8}{7} \\ x\in( \frac{8}{7} ;6)\cup(6; + \infty)" align="absmiddle" class="latex-formula">