Докажите тождества (их 5)

0 голосов
55 просмотров

Докажите тождества (их 5)


image

Алгебра (350 баллов) | 55 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1.

\frac{tg(a)^{2}}{1+tg(a)^{2}}*\frac{1+(\frac{1}{tg(a)})^{2}}{(\frac{1}{tg(a)})^{2}}=\frac{tg(a)^{2}}{1+tg(a)^{2}}*\frac{1+\frac{1}{tg(a)^{2}}}{\frac{1}{tg(a)^{2}}}=\frac{tg(a)^{2}}{1+tg(a)^{2}}*\frac{\frac{tg(a)^{2}+1}{tg(a)^{2}}}{\frac{1}{tg(a)^{2}}}=\frac{tg(a)^{2}}{1+tg(a)^{2}}*\frac{tg(a)^{2}+1}{1}=tg(a)^{2}*\frac{1}{1}=tg(a)²×1=tg(a)²;

2.

(\frac{sin(a)}{cos(a)})^{2}+sin(a)^{2}-\frac{1}{cos(a)^{2}}=\frac{sin(a)^{2}}{cos(a)^{2}}+sin(a)^{2}-\frac{1}{cos(a)^{2}}=\frac{sin(a)^{2}+cos(a)^{2}sin(a)^{2}-1}{cos(a)^{2}}=\frac{-(1-sin(a)^{2})+cos(a)^{2}*sin(a)^{2}}{cos(a)^{2}}=\frac{-cos(a)^{2}+cos(a)^{2}*sin(a)^{2}}{cos(a)^{2}}=\frac{(-1+sin(a)^{2})*cos(a)^{2}}{cos(a)^{2}}=\frac{-(1-sin(a)^{2})cos(a)^{2}}{cos(a)^{2}}=\frac{-cos(a)^{2}*cos(a)^{2}}{cos(a)^{2}}=\frac{-cos(a)^{4}}{cos(a)^{2}}=-cos(a)²;

3.

1+ ((\frac{cos(a)}{sin(a)})^{2}-(\frac{sin(a)^{2}}{cos(a)^{2}})^{2})*cos(a)^{2}=1+(\frac{cos(a)^{2}}{sin(a)^{2}}-\frac{sin(a)^{2}}{cos(a)^{2}})*cos(a)^{2}=1+\frac{cos(a)^{4}-sin(a)^{4}}{sin(a)^{2}*cos(a)^{2}}*cos(a)^{2}=1+\frac{-(sin(a)^{4}-cos(a)^{4})}{sin(a)^{2}}=1+\frac{-((sin(a)^{2}-cos(a)^{2})*(sin(a)^{2}+cos(a)^{2}))}{sin(a)^{2}}=1+\frac{-(-(sin(a)^{2}-cos(a)^{2})*1)}{sin(a)^{2}}=1+\frac{-(-cos(2a))}{sin(a)^{2}}=1+\frac{cos(2a)}{sin(a)^{2}}=\frac{sin(a)^{2}+cos(2a)}{sin(a)^{2}}=\frac{sin(a)^{2}+cos(a)^{2}-sin(a)^{2}}{sin(a)^{2}}=\frac{cos(a)^{2}}{sin(a)^{2}}=(\frac{cos(a)}{sin(a)})^{2}=ctg(a)²;

4.

cos(2a)+\frac{2sin(2a)}{\frac{1}{tg(a)}-tg(a)}=cos(2a)+\frac{2sin(2a)}{\frac{1-tg(a)^{2}}{tg(a)}}=cos(2a)+\frac{2sin(2a)}{\frac{1}{\frac{1}{2}*tg(2a)}}=cos(2a)+\frac{2sin(2a)}{\frac{1}{\frac{tg(2a)}{2}}}=cos(2a)+\frac{2sin(2a)}{\frac{2}{tg(2a)}}=cos(2a)+sin(2a)*tg(2a)=cos(2a)+sin(2a)*\frac{sin(2a)}{cos(2a)}=cos(2a)+\frac{sin(2a)^{2}}{cos(2a)}=\frac{cos(2a)^{2}+sin(2a)^{2}}{cos(2a)}=\frac{1}{cos(2a)};

5.

(sin(a)²+(tg(a)·sin(a))²)·\frac{cos(a)}{sin(a)}=(sin(a)^{2}+(\frac{sin(a)}{cos(a)}*sin(a))^{2})*\frac{cos(a)}{sin(a)}=(sin(a)^{2}+<img src="https://tex.z-dn.net/?f=+%28%5Cfrac%7Bsin%28a%29%5E%7B2%7D%7D%7Bcos%28a%29%7D%29%5E%7B2%7D%29%2A%5Cfrac%7Bcos%28a%29%7D%7Bsin%28a%29%7D+" id="TexFormula38" title=" (\frac{sin(a)^{2}}{cos(a)})^{2})*\frac{cos(a)}{sin(a)} " alt=" (\frac{sin(a)^{2}}{cos(a)})^{2})*\frac{cos(a)}{sin(a)} " align="absmi

(1.1k баллов)