Средняя длина равнобедренного треугольника, параллельная его основанию, равна 6 см, а...

0 голосов
53 просмотров

Средняя длина равнобедренного треугольника, параллельная его основанию, равна 6 см, а средняя линяя, параллельна боковой стороне, равна 5 см. Найти площадь треугольника


Геометрия (185 баллов) | 53 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

S = 1/2 * AC * BK

1) MK = 1/2 *BC, т.к. это средняя линия
=> BC = 2*MK = 2*5 = 10 (см)

MN = 1/2 * AC, т.к. это средняя линия
=> AC = 2*MN = 2*6 = 12 (см)

2) Найдем BK.
BK является и высотой, и медианой, т.к. треугольник АBC равнобедренный (по условию).
Т.е. угол BKC = 90 и CK = 1/2 * AC = 1/2 * 12 = 6 (см)
По теореме Пифагора:
BK^2 + KC^2 = BC^2
BK^2 = BC^2 - KC^2
BK^2 = 100 - 36 = 64
BK = 8 (см)

3) S = 1/2 * 12 * 8 = 48 (см^2)

Ответ: 48 см^2.


image
(41.5k баллов)
0 голосов

Средняя линия треугольника соединяет середины сторон, параллельна третьей стороне и равна ее половине. Знаем средние линии, следовательно знаем стороны. Основание равно 6*2=12, боковые стороны равны 5*2=10.

Опустим высоту на основание. Высота будет являться медианой и разделит основание пополам, а равнобедренный треугольник - на два прямоугольных. Прямоугольный треугольник c катетом 6 и гипотенузой 10 - египетский (3:4:5), множитель 2, высота равна 4*2=8.

S=12*8/2=48.


ИЛИ

Основание b=12, боковые стороны a=10.

По формуле Герона

S= b/2 *√((a+b/2)(a-b/2)) =6√(16*4) =6*8 =48


image
(18.3k баллов)