Экскурсионный теплоход регулярно перемещается из пункта A в пункт B, расстояние между...

0 голосов
186 просмотров

Экскурсионный теплоход регулярно перемещается из пункта A в пункт B, расстояние между которыми 570 км. Теплоход отправился с постоянной скоростью из A в B. После прибытия он отправился обратно со скоростью на 8 км/ч больше прежней, сделав по пути остановку на отдых на 4 часа. В результате теплоход затратил на обратный путь столько же времени, сколько на путь от A до B. Найдите скорость теплохода на пути из A в B. Ответ дайте в км/ч.


Алгебра (617 баллов) | 186 просмотров
0

570/x=570/(x+8)+4

0

x=30

Дан 1 ответ
0 голосов
Правильный ответ

Пусть скорость теплохода равна х км/ч из А в В, тогда в обратный путь из В в А скорость теплохода равна (x+8) км/ч. Время, затраченное в путь из А в В, равно 570/х, а в обратном направлении - 570/(x+8). На весь путь теплоход затратил 570/x - 570/(x+8), что составляет, по условию, 4 часа.



Составим уравнение и решим его.

\displaystyle \frac{570}{x}-\frac{570}{x+8}=4~~|\cdot 0.5x(x+8)\\ 285(x+8)-285x=2x(x+8)\\ 285x+2280-285x=2x(x+8)~~|:2\\ 1140=x(x+8)\\ x^2+8x-1140=0

По теореме Виета: x_1=-38 - не удовлетворяет условию.

                                    x_2=30 км/ч - скорость теплохода из А в В


Ответ: 30 км/ч.

(22.5k баллов)