Две противоположные стороны прямоугольника уменьшили ** 1/4 часть, а две другие –...

0 голосов
89 просмотров

Две противоположные стороны прямоугольника уменьшили на 1/4 часть, а две другие – увеличили на 1/2 часть. Как изменилась площадь прямоугольника?


Математика (531 баллов) | 89 просмотров
Дан 1 ответ
0 голосов

Пусть х и у - длины смежных сторон прямоугольника. Его площадь S=xy.

(1+\frac{1}{2} )x=\frac{3}{2} x и (1-\frac{1}{4} )y=\frac{3}{4} y - длины измененных сторон.

Новая площадь S=\frac{3}{2} x \cdot \frac{3}{4} y= \frac{9}{8}x y = 1\frac{1}{8} xy = 1\frac{1}{8}S

Последнее выражение показывает, что первоначальная площадь увеличилась в 1\frac{1}{8} раз


image
(25.2k баллов)