0\; \to \; 0^\circ <(\vec{n}_0,OZ)<90^\circ \\\\\iint \limits_{S}\, z\, dx\, dy=\iint \limits_{D_{xy}}\, (1-x+y)\, dx\, dy=\int\limits^1_0\, dx \int\limits_{x-1}^0\, (1-x+y)\, dy=\\\\=\int\limits^1_0\Big ((1-x)\cdot y+\frac{y^2}{2}\Big )\Big |^0_{x-1}\, dx=\int\limits^1_0\, \Big ((x-1)^2-\frac{(x-1)^2}{2}\Big )\, dx=\\\\=\int\limits^1_0\, \frac{(x-1)^2}{2}\, dx=\frac{(x-1)^3}{6}\Big |_0^1=\frac{1}{6}\cdot (0-(-1))=\frac{1}{6}" alt="12.\; \; S:\; \; x-y+z=1\; \to \; \; \vec{n}=(1,-1,1)\; ,\; \vec{n}_0=(\frac{1}{\sqrt3},-\frac{1}{\sqrt3},\frac{1}{\sqrt3})\\\\cos(OZ,\vec{n}_0)>0\; \to \; 0^\circ <(\vec{n}_0,OZ)<90^\circ \\\\\iint \limits_{S}\, z\, dx\, dy=\iint \limits_{D_{xy}}\, (1-x+y)\, dx\, dy=\int\limits^1_0\, dx \int\limits_{x-1}^0\, (1-x+y)\, dy=\\\\=\int\limits^1_0\Big ((1-x)\cdot y+\frac{y^2}{2}\Big )\Big |^0_{x-1}\, dx=\int\limits^1_0\, \Big ((x-1)^2-\frac{(x-1)^2}{2}\Big )\, dx=\\\\=\int\limits^1_0\, \frac{(x-1)^2}{2}\, dx=\frac{(x-1)^3}{6}\Big |_0^1=\frac{1}{6}\cdot (0-(-1))=\frac{1}{6}" align="absmiddle" class="latex-formula">