Какими должны быть p и q, чтобы уравнение x²+px+q=0 имело корнями числа p и q?

0 голосов
62 просмотров

Какими должны быть p и q, чтобы уравнение
x²+px+q=0
имело корнями числа p и q?


Математика (181 баллов) | 62 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

P^2+p^2+q=0
q^2+pq+q=0

q=-2p^2

(-2p^2)^2-2p^3-2p^2=0
4p^4-2p^3-2p^2=0
2p^2(2p^2-p-1)=0
p=0, q=0
или p=1 q=-2
или p=-0.5 q=-0.5
Таким образом мы имеем три пары чисел p и q. Проверяем: для p=1 q= -2, уравнение имеет вид x^2+x-2=0, которое действительно имеет корни x=1 и x=-2, для случая p=q=0, два корня совпадают и также равны нулю. А вот для p=-0.5 q=-0.5 получаем уравнение x^2-0.5x-0.5=0, корни которого x=1 и x=-0.5=> этот ответ исключаем. Таким образом подходят пары чисел p=q=0 и p=1 q=-2

(12.1k баллов)