Сперва находим производную:
у` = 3x^2 - 6x + 0 = 3x^2 - 6x
Приравниваем производную к нулю:
3x^2 - 6x = 0
3x(x-2) = 0
3x=0 или x-2=0
x= 0
x= 2
Если в точке x выполняется условие f`0(x) = 0 , f`0(x) >0 , то эта точка является точкой локального минимума.
Если выполняется условие f`0(x)<0 , то это точка локального максимума.<br>f`0(0) = 0^3 - 3*0^2 + 4 = 4
f`0(2) = 2^3 - 3*2^2 +4 = 8-12+4 = 0
Здесь мы имеем только точки минимума, точка максимума отсутствует.