НОД(8n^2+6n, 8n^2+10n)=20
НОД(2n(4n+3), 2n(4n+5))=20
Очевидно, что при любом "n", 4n+3 и 4n+5 не имеют общих делителей (т.к. отличаются на два, то могут разделится на это число, но не более; однако четными являться не будут, а значит на два не разделятся), то есть:
НОД(2n(4n+3), 2n(4n+5))=2n=20
2n=20
n=10
НОК (n^2+n, n^2+3n)=НОК (n(n+1), n(n+3))=n=10
Ответ: 10