Всегда ли верны равенства корень а в шестой степени = а в третьей стопени

0 голосов
289 просмотров

Всегда ли верны равенства корень а в шестой степени = а в третьей стопени


Математика (19 баллов) | 289 просмотров
0

только при x=0 и x=1

0

0 в любой степени есть 0.

0

Только при а ≥ 0

0

При а < 0 слева - положительное число, справа - отрицательное

Дано ответов: 2
0 голосов
Правильный ответ

Под корнем чётной степени может стоять только неотрицательное действительное число.
( \sqrt{a} )^6   -  выражение справедливо для a≥0
a³    -   выражение справедливо для всех действительных чисел  а ∈ R
( \sqrt{a} )^6 = a^3    равенство верное для всех действительных a ≥ 0
Для отрицательных значений а  равенство неверное, так как под корнем чётной степени не может стоять отрицательное действительное число
------------------------------------------------------------------------------------------------

Однако  в области комплексных чисел данное равенство верно всегда. Например,
( \sqrt{-7} )^6 = \sqrt{7} ^6*i^6 = 7^3*(i^2)^3=7^3*(-1)^3 = -7^3=(-7)^3,
где i= \sqrt{-1}

(41.1k баллов)
0 голосов
\sqrt{a} ^{6}=a^{3} возведем обе части \sqrt{ }^{3}, но поставим ОДЗ a⩾0
\sqrt{a}^{2}=a
a∈[0, +∞)
(932 баллов)