Помогите пожалуйста, решить показательное уравнение...

0 голосов
19 просмотров

Помогите пожалуйста, решить показательное уравнение
(4)^((x+1)/x)+(6)^((x+1)/x)=2*(9)^((x+1)/x)если можно с подробным решением.


image

Математика (33 баллов) | 19 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
4^{\frac{x+1}{x}}+6^{\frac{x+1}{x}}=2*9^{\frac{x+1}{x}} \\ (2^{\frac{x+1}{x}})^2+2^{\frac{x+1}{x}}*3^{\frac{x+1}{x}}=2*(3^{\frac{x+1}{x}})^2 \\ 2^{\frac{x+1}{x}}=a; 3^{\frac{x+1}{x}}=b \\ a^2+ab=2b^2 \\ a^2+ab-2b^2=0 \\ a^2-ab+2ab-2b^2=0 \\ a(a-b)+2b(a-b)=0 \\ (a-b)(a+2b)=0 \\ a+2b=0; a=-2b (1) \\ a-b=0; a=b (2) \\ \\ (1) 2^{\frac{x+1}{x}}=-2*3^{\frac{x+1}{x}} \\ \varnothing \\ \\ (2) 2^{\frac{x+1}{x}}=3^{\frac{x+1}{x}} \\ \frac{x+1}{x}=0 \\ x+1=0 \\ x=-1

Ответ: x=-1
(6.8k баллов)
0

Спасибо большое.Очень помогло.