5^(log₁₃x)² = t
t² -6t -4 = 0
t₁= 3 + √13, t₂ = 3 - √13,
5^(log₁₃x)² = 3 + √13, 5^(log₁₃x)² = 3 - √13,
5^(log₁₃x)² =5^log₅(3 + √13) ∅
(log₁₃x)² = 3 +√13
log₁₃x = +-√(3 +√13)
x₁ = 13 ^√(3 +√13), x₂=13^-√(3 +√13)
x₁ * x₂ = 13 ^√(3 +√13) * 13^-√(3 +√13) = 13^0 = 1