0\\
x>3\\
(3;+oo)\\
" alt="y=log_{3}(x(x-3))-log_{3}x\\
y=log_{3}(\frac{x(x-3)}{x})\\
y=log_{3}(x-3)\\
x-3>0\\
x>3\\
(3;+oo)\\
" align="absmiddle" class="latex-formula">
130\\
5^{\frac{1}{x}}+5^{\frac{1}{x}}*25>130\\
26*5^{\frac{1}{x}}>130\\
5^{\frac{1}{x}}>5\\
\frac{1}{x}>1\\
x>1\\
" alt="5^{\frac{1}{x}}+5^{\frac{1}{x}+2}>130\\
5^{\frac{1}{x}}+5^{\frac{1}{x}}*25>130\\
26*5^{\frac{1}{x}}>130\\
5^{\frac{1}{x}}>5\\
\frac{1}{x}>1\\
x>1\\
" align="absmiddle" class="latex-formula">
0\\
x>-1\\
7-x^2>0\\
-x^2>-7\\
x^2<7\\
(-1;\sqrt{7})\\
" alt="y=\frac{ln(7-x^2)}{x+1}\\
\\
x+1>0\\
x>-1\\
7-x^2>0\\
-x^2>-7\\
x^2<7\\
(-1;\sqrt{7})\\
" align="absmiddle" class="latex-formula"> сумма 1+2=3
0\\
D=36+4*1*9 = 6\sqrt{2}\\
x_{1}=\frac{1+\sqrt{2}}{3}\\
x_{2}=\frac{1-\sqrt{2}}{3}\\
(-oo;\frac{1-\sqrt{2}}{3}) U (\frac{1+\sqrt{2}}{3};+oo)" alt="9x^2-6x-1>0\\
D=36+4*1*9 = 6\sqrt{2}\\
x_{1}=\frac{1+\sqrt{2}}{3}\\
x_{2}=\frac{1-\sqrt{2}}{3}\\
(-oo;\frac{1-\sqrt{2}}{3}) U (\frac{1+\sqrt{2}}{3};+oo)" align="absmiddle" class="latex-formula">
1\\
3-6x>0\\
-6x>-3\\
x<\frac{1}{2}\\
" alt="2^{3-6x}>1\\
3-6x>0\\
-6x>-3\\
x<\frac{1}{2}\\
" align="absmiddle" class="latex-formula">
очевидно что это -1