Какая окружность называется вписанной в треугольника как найти её центр и построить

0 голосов
35 просмотров

Какая окружность называется вписанной в треугольника как найти её центр и построить


Геометрия (21 баллов) | 35 просмотров
Дан 1 ответ
0 голосов

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Общие точки окружности и треугольника называются точками касания.

Запись окр. (O; r) читают: «Окружность с центром в точке O и радиусом r».

На рисунке окр. (O; r) — вписанная в треугольник ABC.

M, K, F- точки касания.

Свойства вписанной в треугольник окружности.

1) Центр вписанной в треугольник окружности является точкой пересечения биссектрис этого треугольника.

AO, BO, CO — биссектрисы треугольника ABC.

2) Отрезки соединяющие центр вписанной окружности с точками касания, перпендикулярны сторонам треугольника (как радиусы, проведенные в точку касания):

  

  

  

3) Вписанная в треугольник окружность делит стороны треугольника на 3 пары равных отрезков.

 

  

  

  

(135 баллов)