В основании пирамиды SABCD лежит ромб ABCD сторона которого равна 8,а угол при вершине...

0 голосов
253 просмотров
В основании пирамиды SABCD лежит ромб ABCD сторона которого равна 8,а угол при вершине А равен 60°.Известно, что SA=15,SC=√33, и кроме того SB=SD. Докажите, что SC-высота пирамиды и найдите угол между плоскостью ASC и ребром SB

Математика (582 баллов) | 253 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) Из условия SB=SD и СВ = СD как стороны ромба следует, что отрезок SС лежит в вертикальной плоскости.
Теперь рассмотрим треугольник АSС.
Отрезок АС, как диагональ ромба с острым углом 60 градусов, равен:
АС = 2*8*cos (60°/2) = 16*(√3/2) = 8√3.
AC² = 192, SC² = 33. Их сумма равна 225, то есть равна АS² = 15² = 225.
Поэтому угол SСА прямой и отрезок SС - высота пирамиды.

2)   Задачу определения угла между плоскостью ASC и ребром SB можно решить двумя способами.
2.1) 
При геометрическом методе нужно найти какую-нибудь удобную точку на прямой, опустить перпендикуляр на плоскость, выяснить, что из себя представляет проекция, а потом решать планиметрическую задачу по поиску угла φ в треугольнике.
Спроецируем ребро SB на плоскость ASC.
Точка S остаётся на месте, а точка В - в точку О (это середина диагонали АС основания).
Находим длину отрезка SO = 
√(SC²+OC²) = √(33+48) = √81 = 9.
Тогда заданный угол - это угол BSO.
Треугольник BSO - прямоугольный так как отрезок ВО перпендикулярен плоскости ASC.
Получаем ответ: угол BSO = arc tg (4/9) =  0,418224 радиан = 23,96249°.

2.2) При алгебраическом методе вводится система координат, определяются координаты двух точек на прямой и уравнение плоскости, а затем применяется формула вычисления угла между прямой и плоскостью.
Вводим систему координат: точка А - начало, ось Оу по диагонали АС, ось Ох - перпендикулярно Оу, ось Oz - через точку А.
Координаты точки В(-4; 4
√√3; 0), точки S(0; 8√3; √33).
Вектор SB(-4; -4√3; -√33), модуль |SB| =√(-4)²+(-4√3)²+(-√33)²) = √97.
Так как плоскость ASC совпадает с плоскостью  zOy, то её уравнение х = 0, коэффициент А = 1.
sin \alpha = \frac{(-1)*(-4)}{1* \sqrt{97}} = \frac{4}{ \sqrt{97} }=0,406138.
Угол BSO = arc sin (4/√97) =  0,418224 радиан = 23,96249°.
(309k баллов)