Тема: Комплексные числа в тригонометрической форме. Запишите комплексное число в...

0 голосов
55 просмотров

Тема: Комплексные числа в тригонометрической форме.
Запишите комплексное число в тригонометрической и показательной формах:
z=1-√3 i


Алгебра (29.7k баллов) | 55 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
z=Re+i*Im\\\\ r=|z|=\sqrt{(Re)^2+(Im)^2}\\\\ cos(\phi)=\frac{Re}{r}=\frac{Re}{\sqrt{(Re)^2+(Im)^2}}\\\\ sin(\phi)=\frac{Im}{r}=\frac{Im}{\sqrt{(Re)^2+(Im)^2}}\\\\ z=r*[cos(\phi)+i*sin(\phi)]\\\\

z=1-\sqrt{3}*i\\\\ Re=1\ \ \ Im=-\sqrt{3}\\\\ r=|z|=\sqrt{(Re)^2+(Im)^2}=\sqrt{1^2+(-\sqrt{3})^2}=2\\\\ cos(\phi)=\frac{Re}{r}=\frac{1}{2}\\\\ sin(\phi)=\frac{Im}{r}=\frac{-\sqrt{3}}{2}=-\frac{\sqrt{3}}{2}\\\\ \phi=-\frac{\pi}{3}\\\\ z=r*[cos(\phi)+i*sin(\phi)]\\\\ z=2*[cos(-\frac{\pi}{3})+i*sin(-\frac{\pi}{3})]

z=|z|*e^{i\phi}=2*e^{i*(-\frac{\pi}{3})}
-------------------------------------------

Ответ: 2*[cos(-\frac{\pi}{3})+i*sin(-\frac{\pi}{3})]=2*e^{i*(-\frac{\pi}{3})}  
(8.6k баллов)