Из точки вне окружности проведены к ней две касательные. Кратчайшие расстояние от этой...

0 голосов
124 просмотров

Из точки вне окружности проведены к ней две касательные. Кратчайшие расстояние от этой точки до окружности равно радиусу окружности. Найди угол между касательными:
А. 30°
В. 45°
С. 90°
Д. 120°


Геометрия (78 баллов) | 124 просмотров
Дан 1 ответ
0 голосов

Пусть АВ и АС - касательные из точки А к окружности с центром в О.
Пусть М - точка пересечения отрезка АО и АМ. Тогда АМ - кратчайшее расстояние от А до окружности. По условию АМ = ОМ = ОВ = r, где r - радиус окружности.
По ствойству касательной к окружности ОВ⊥АВ ⇒ ΔАОВ - прямоугольный, в котором гипотенуза ОА в 2 раза больше катета ОВ ⇒ ∠ОАВ = 30°.
Как известно, центр окружности, вписанной в угол, лежит на биссектрисе этого угла. Поэтому ∠ВАС = 2·30° = 60°.
Ответ: 60°.


image
(25.2k баллов)