Доказать тождество: cos^6a+sin^6a=1/8(5+3cos4a)

0 голосов
141 просмотров

Доказать тождество: cos^6a+sin^6a=1/8(5+3cos4a)


Алгебра (95 баллов) | 141 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

cos^6a+sin^6a=(cos^2a+sin^2a)*(cos^4a+sin^4a-cos^2asin^2a)=

=(cos^2a-sin^2a)^2+cos^2asin^2a=(cos2a)^2+1/4(sin2a)^2=

=cos4a+5/4sin^2(2a)=cos4a+5/4(1/2(1-cos4a))=cos4a+5/8-5/8cos4a=

=1/8(5+3cos4a)

 

(232k баллов)