Отрезки AC и BM пересекаются в точке O и точкой пересечения делятся пополам. Доказать,...

0 голосов
156 просмотров

Отрезки AC и BM пересекаются в точке O и точкой пересечения делятся пополам. Доказать, что треугольник AOM равен треугольнику


Геометрия (24 баллов) | 156 просмотров
Дан 1 ответ
0 голосов

В ∆ АОВ и ∆ СОМ  углы при О равны ( вертикальные),  

ВО=ОМ и АО=ОС по условию. 

В ∆ АОВ и ∆ СОМ  равны две стороны и угол между ними.  ∆ АОВ и ∆ СОМ равны по первому признаку равенства треугольников. Следовательно, АВ=СМ

Аналогично доказывается в ∆ ВОС и ∆ АОМ. равенство ВС и АМ. 

В ∆ АВС и ∆ СМА стороны АВ=СМ, стороны ВС=АМ, сторона АС - общая. 

Следовательно, ∆ АВС = ∆ СМА по 3-му признаку равенства треугольников. 

Сама подставь свои буквы.

(18 баллов)