Мистер Фокс загадал позиционную систему счисления и предложил вам отгадать её. Он...

0 голосов
78 просмотров

Мистер Фокс загадал позиционную систему счисления и предложил вам отгадать её. Он обозначил цифры символами (каждая цифра заменена одним символом, одинаковые цифры заменены одинаковыми символами) и сообщил, что
# - это 1 в десятичной системе,
* - это 4 в десятичной системе,
@ - это 7 в десятичной системе.
Чему равно #@* в десятичной системе счисления?
Комментарий. Из Сообщения мистера Фокса не следует, что в загаданной системе счисления есть только три цифры. Просто про остальные он ничего не сказал.


Информатика (64 баллов) | 78 просмотров
0

фоксфорд?

0

Да

Дан 1 ответ
0 голосов

Тут довольно простое задание, которое можно решить просто подбором (найти правильное основание системы, и заодно выяснить что за цифры соответствуют остальным символам).Я объясню немного подробнее логику рассуждений при таком решении.
Итак:символ  #     это 1запись   # *    это 4запись   # @   это 7
Найти, чему равна запись  @ * #
Для того, чтобы это найти, нам надо узнать основание используемой здесь системы счисления. Обозначим его как x.Вспомним, что основание системы счисления- это целое число не меньше двух (x ≥ 2).
Рассмотрим запись числа четыре:
(это перевод числа из системы с основанием x в десятичную)Раз запись числа 4 состоит из двух разрядов, значит основание системы не может быть больше четырёх (x≤4).Ведь уже при основании пять (x = 5)  вес второго разряда числа был бы равен пяти (), и всё число было бы явно больше четырёх.
Далее, рассмотрим запись числа семь:
Мы видим, что второй разряд не изменился- здесь тоже стоит единица. А само число увеличилось на три (7 - 4 = 3). Значит, на три увеличилась цифра в первом разряде (была *, стала @). То есть, 
Итак, основание- это целое число, не меньше двух и не больше четырёх. Подходят всего три числа- 2, 3, 4.В каком из этих оснований системы можно прибавить к цифре три без переноса в следующий разряд?если основание 2 -то есть всего две цифры:  0 и 1если основание 3 -то есть три цифры: 0, 1 и 2если основание 4 -то четыре цифры: 0, 1, 2 и 3Такие цифры используются в одном разряде. И, если при сложении мы выходим за эти цифры, то произойдёт перенос в следующий разряд (чего у нас не было, во втором разряде осталась единица).
Получается, что в пределах одного разряда, тройку можно прибавить только в системе с основанием 4, причём только в одном случае (0 + 3 = 3).Значит:символ  *  это 0символ  @  это 3а основание системы счисления равно четырём
Осталось перевести запись @ * #  из четверичной в десятичную систему счисления:

Ответ: 49

(48 баллов)
0

Тут другое решение