Мистер Фокс разрабатывает программу для робота-лунохода. Сегодня его роботу нужно...

0 голосов
43 просмотров

Мистер Фокс разрабатывает программу для робота-лунохода. Сегодня его роботу нужно добраться по прямой дороге длиной 22 фута от космодрома до базы, попутно забрав ценный предмет. Будем считать дорогу отрезком, в левом конце которого находится космодром, в правом конце – база, а ровно посередине – лежит ценный предмет. Мистер Фокс может давать роботу три команды: A – сместиться на 1 фут вправо, B – сместиться на 2 фута вправо, C – сместиться на 3 фута вправо. Набор из 22 фута команд A является удачным, так как приводит робота на базу (попутно он заберет ценный предмет, потому что остановится около него), а вот набор BВСССССС удачным не является: робота на базу он приведет, но вот ценный предмет робот не заберет, поскольку не остановится около него. Сколько существует удачных наборов команд?


Информатика (66 баллов) | 43 просмотров
Дан 1 ответ
0 голосов

Все удачные наборы команд должны включать остановку на отметке 10 футов.
На отметку 1 фут робот может попасть с помощью одной команды A;
на отметку 2 фута - с помощью команд AA и B (всего 2 набора команд);
на отметку 3 фута - с помощью команд AAA, AB, BA и C (4 набора).
Так как за одну команду робот может переместиться на 1, 2 или 3 фута, то для подсчета количества наборов команд, позволяющих роботу попасть на отметки N > 3, можно использовать формулу
K(N) = K(N-1)+K(N-2)+K(N-3).
K(4) = K(3)+K(2)+K(1) = 4+2+1 = 7
K(5) = K(4)+K(3)+K(2) = 7+4+2 = 13
K(6) = K(5)+K(4)+K(3) = 13+7+4 = 24
K(7) = K(6)+K(5)+K(4) = 24+13+7 = 44
K(8) = K(7)+K(6)+K(5) = 44+24+13 = 81
K(9) = K(8)+K(7)+K(6) = 81+44+24 = 149
K(10) = K(9)+K(8)+K(7) = 149+81+44 = 274
Так как вторая часть пути робота также имеет длину 10, то общее количество удачных наборов команд = 274*274= 75076

(185 баллов)