Найдите минимум функции f(x,y,z,t)=(x-y)^2+(z-t)^2 при условии...

0 голосов
39 просмотров

Найдите минимум функции f(x,y,z,t)=(x-y)^2+(z-t)^2 при условии
(x-2)^2+(y-3)^2+(z-1)^2+(t-4)^2=1.
Выберите верный ответ.
1)5-2√6
2)5+2√6
3)12+4√5
4)2-4√5


Математика (266 баллов) | 39 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Посмотрим на задачу с точки зрения геометрии. Пусть есть точки A = (2, 1), B = (3, 4), L = (x, z) и M = (y, t). Тогда (x - 2)^2 + (z - 1)^2 – квадрат длины отрезка AL, (y - 3)^2 + (t - 4)^2 – квадрат длины отрезка BM, (x - y) + (z - t)^2 – квадрат длины отрезка LM.

Заметим, что AB = \sqrt{(3 - 2)^2 + (4 - 1)^2} = \sqrt{10}. Поскольку по условию AL^2 + BM^2 = 1, то AL, BM < 1, и минимальное значение LM (а значит, и LM^2) будет достигаться тогда, когда L и M лежат на отрезке AB.

Обозначим AL = u, тогда BM = \sqrt{1 - u^2}, AL + BM = v.
LM = \sqrt{10} - v будет минимально, когда v (и v^2) будет максимально.

v^2 = (u + \sqrt{1 - u^2})^2 = 1 + 2\sqrt{u^2(1-u^2)}
Под корнем стоит квадратный трёхчлен относительно u^2, его максимум достигается в вершине, когда u^2=1/2, при этом v^2 достигает максимального значения 2, поэтому максимальное значение v равно \sqrt2

Тогда минимальное значение LM^2 равно:
LM^2=(\sqrt{10}-\sqrt2)^2=10-2\sqrt{10\cdot2}+2=12-4\sqrt5


image
(148k баллов)