Λ² - 4√2 λ + 6 = 0
D = 32 - 24 = 8
λ₁ = (4√2 - 2√2)/2 = √2
λ₂ = (4√2 + 2√2)/2 = 3√2
y = С₁e^(√2x) + C₂e^(3√2x)
y' = √2С₁e^(√2x) + 3√2C₂e^(3√2x)
y(0) = C₁ + C₂ = -3 => C₂ = -3 - C₁
y'(0) = √2C₁ + 3√2C₂ =1
√2C₁ + 3√2(-3-C₁) =1
-2√2C₁ -9√2 = 1
C₁ = -(1+9√2)/(2√2) = -(√2+18)/4
C₂ = (√2 + 6)/4
y = -(√2+18)/4 * e^(√2) + (√2 + 6)/4 * e^(3√2)