Найдите радиус окружности,описанной около равнобедренного треугольника,боковые стороны которого равны 4 см, а угол, заключенный между ними,равен 120 градусов.
Дано: ΔАВС - равнобедренный, АВ=ВС=4 см. ∠В=120° Найти R R=abc\4S S=1\2*а*в*sin120=1\2*4*4*√3\2=4√3 cм² АС²=АВ²+ВС²-2*АВ*ВС-cos120°=16+16-32*(-1\2)=32-(-16)=32+16=48 АС=√48=4√3 см R=4*4*4√3\4*√3=4 см. Ответ: 4 см.