Найти корни уравнения. (1-1i) * x2 + (-3+3i) * x + (14-8i) =0

0 голосов
42 просмотров

Найти корни уравнения.
(1-1i) * x2 + (-3+3i) * x + (14-8i) =0


Математика (12 баллов) | 42 просмотров
Дан 1 ответ
0 голосов

I²= -1
(1-i)x²+(-3+3i)x+(14-8i)=0
D=(-3+3i)²-4(1-i)(14-8i)=9-18i+9i²-4(14-22i+8i²)=9-18i-9-56+88i+32=70i-24

x_{1} = \frac{-(-3+3i)+ \sqrt{70i-24} }{2-2i}=1,5+ \frac{\sqrt{70i-24}}{2-2i}

x_{2} = \frac{-(-3+3i)- \sqrt{70i-24} }{2-2i}=1,5- \frac{\sqrt{70i-24}}{2-2i}

К сожалению, я не знаю, как далее провести преобразования, поэтому ответ таковой, незаконченный

(2.4k баллов)