Внешний угол треугольника (∠ABD) равен сумме внутренних углов, не смежных с ним.
∠ABD= ∠A+∠C
∠ABM= ∠A+∠C (по условию)
∠ABD=∠ABM
Построим среднюю линию MN в △ABC.
AB||MN, BN=BC/2
∠ABM=∠BMN (накрест лежащие при параллельных AB||MN)
∠ABD=∠BNM (соответственные при параллельных AB||MN)
∠BMN=∠BNM, △BMN - равнобедренный, BM=BN
BM=BC/2
Ответ: BC/BM =2