Плоскость BMD - равнобедренный треугольник, плоскость a даёт в сечении четырёхугольник РКТА, состоящий из двух равнобедренных треугольников РКТ и РТА с общим основанием РТ.
Проведём сечение CSA.
Оно перпендикулярно заданным плоскостям и пересекает их по высотам треугольников.
Из подобия треугольников в полученном сечении имеем:
- высота треугольника РКТ равна половине высоты BMD,
- основание треугольника РКТ равна половине основания BMD.
Получаем: S(РКТ) = (1/4)S(BMD).
Высота КЕ треугольника РКТ равна половине высоты МО треугольника BMD, а сумма высот КА треугольников РКТ и BMD в 2 раза больше МО, то есть равна 4 высоты КЕ.
Отсюда вывод: высота ЕА равна 3 высоты КЕ и площадь треугольника РТА равна трём площадям РКТ.
Подходим к ответу:
S(РКТА) = 4S(РКТ) =S(BMD).