Из фигуры, ограниченной кривой y=x^(1/3) и прямыми x = 4 и y = 0, вырезать прямоугольник...

0 голосов
159 просмотров

Из фигуры, ограниченной кривой y=x^(1/3) и прямыми x = 4 и y = 0, вырезать прямоугольник наибольшей площади.


Математика (12 баллов) | 159 просмотров
Дан 1 ответ
0 голосов

Площадь искомого прямоугольника выражается формулой y*(4-x) = (4-x)*x^(1/3) = 4 x^{ \frac{1}{3} } - x^{ \frac{4}{3} }
Производная площади по х
 \frac{4}{3} x^{ \frac{-2}{3} } - \frac{4}{3}x^{ \frac{1}{3} }
Находим 0 производной
\frac{4}{3} x^{ \frac{-2}{3} } - \frac{4}{3}x^{ \frac{1}{3} } = 0
x=1
Значение y(1)=1
Прямоугольник ограничен точками (1,0), (1,1), (4,1), (4,0)

(5.0k баллов)